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ABSTRACT

This thesis focuses on hybrid bio-robotics (robots incorporating living animals as

sensors) and visual electrophysiology in insects. The motivation of this study is

solving a current problem of perception in neuromorphic systems. When imitating

biological sensors, we have not completely understood the early processing of the

input to reproduce artificially. Building hybrid systems with both artificial and

real biological components is a promising solution. In hybrid bio-robots using a

dragonfly as a living sensor, the early processing of visual information is performed

fully in the brain of the dragonfly. The only significant remaining tasks are recording

neural signals and processing, along with interpreting neural information in software

and/or hardware for a robot platform. Based on existing works which focused on

recording neural signals, this thesis adds a software application of neural information

processing to make a visual processing module for dragonfly hybrid bio-robots. After

a neural signal is recorded in real-time, spikes of this signal can be detected either

promptly by a hardware module using a simple threshold-based detection method

or more accurately by a software module using an energy-based detection algorithm.

Features of spikes are then extracted using a wavelet decomposition method. Finally,

the system matches spikes with templates to find relevant neurons. The output of

the whole visual processing module will be used to control other parts of a dragonfly

hybrid bio-robot.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Recent Research

In the field of engineering, biologically inspired systems have been designed with

inspiration from biology and principles underlying the neural control in animals.

For example, using models of insect eyes, Jeong et al. [1] have created artificial

compound eyes with thousands of tiny lenses packed side by side. These eyes are

expected to be used in camcorders for omnidirectional surveillance imaging. How-

ever, in simple applications of robotics (e.g., target tracking or collision avoidance),

such artificial eyes may not be suitable for low-cost mobile neuromorphic systems.

Moreover, to reproduce biological visual sensors better, we still need more efforts

to make these eyes more comparable to those found in nature [2]. Additionally, the

early processing of the visual information has not been understood completely.

From a neuroscience viewpoint, one of the contemporary research topics is identi-

fying how sensory systems of insects operate under closed-loop control, i.e. where an

animal can interact with its sensory inputs. Because performing closed-loop control

experiments is limited by the fact that conventional electrophysiology equipment

does not support a freely behaving animal, a promising solution is attaching the

animal on a mobile robot platform in a configuration of a hybrid bio-robot. In this

model, the early processing of the input is done by the brain of a living insect and

other duties are performed by a robot platform [3]. For instance, in 2011 introduc-

ing with moths, Melano [4] proposed an insect-machine interfacing design with a

robotic electrophysiology instrument whose velocity is determined by bioelectrical

signals from the animal.

This hybrid bio-robotics approach not only provides a research tool to better un-

derstand the neurobiological processes underlying behavior, but also is a promising
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solution for the perception of neuromorphic systems. For example, visual response

signals from a dragonfly brain can serve as the visual sensor inputs of a robot. The

dragonfly has attracted our attention for this purpose due to its excellent vision.

Dragonflies have the largest compound eyes of any insect; each containing up to

30, 000 facets, and the eyes cover most of the head. Because of their large, multi-

faceted eyes, the adult dragonfly can see in almost all directions at the same time.

Inspired by the brains of flying insects, the Higgins laboratory (University of

Arizona) has been interfacing the living brains of moths to mobile robots. Ortiz [5]

designed two prototype electrophysiological recording printed circuit boards (PCBs):

an intracellular recording PCB and an extracellular recording PCB. Based on the

extracellular recording board in [5], Routh et al. [6] designed an additional PCB

which is capable of running in real time a software module for signal processing

with four neural signal recording channels. In 2011, Melano used Ortiz’s design to

interface directionally-sensitive visual neurons and pleurodorsal steering muscles of

the mesothorax with a robot. In his work, Melano used the rate of spikes to control

its rotation, thus emulating the classical optomotor response known from studies of

the fly visual system [4].

With a robotic approach for analysis of sensory signals in insects, this thesis

focuses on dragonflies’ visual motion detection neurons. Sensory signals of insects

are transferred from the brain to thoracic ganglia through neurons called descending

interneurons. In 1984, Kien et al. [7] suggested that behaviors of insects were prob-

ably directed by many descending interneurons acting in concert. In the dragonfly,

there are eight large individual descending neurons in the ventral nerve cord (VNC)

that are visual target-selective [8]. Their visual receptive field properties were ana-

lyzed well by Frye et al. [9] in 1995. From these properties, the thesis proposes a

system to characterize dragonflies’ visual motion detection neurons and to work as

a visual processing module for dragonfly hybrid bio-robots.

To characterize dragonfly visual motion detection neurons, action potentials

(“spikes”) in recorded electrophysiological signals should be detected and classi-

fied. Then, from the dragonfly visual receptive field properties, spike templates for
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visual motion detection neurons are pre-defined. These templates will be used to

recognize which descending neurons transmit which spikes. In this study, this pro-

cess is called spike sorting. Recently, several spike-detection and spike-classification

algorithms have been introduced.

There are three groups of spike-detection algorithms: threshold-based methods,

energy-based methods, and template-based ones. A simple example of the first

group, which is often found in spike detector circuits, is using a threshold level to

detect a spike whenever the amplitude value of the input signal goes over this level

[10]. Other examples of this group apply the threshold level to the absolute value

of the input with a static technique [11] or an adaptive technique [12]. Threshold-

based algorithms execute relatively simple computation. Thus, they are suitable

for real-time implementations. However, they are sensitive to noise and require

a step of setting threshold levels [13]. The second group of spike detection algo-

rithms involves a nonlinear energy operator (NEO) to estimate the square of the

instantaneous product of amplitude and frequency of a sufficiently sampled signal

[14]. The third group uses filters to detect spikes whenever a signal sample matches

the filter. Examples for this algorithm group are average-filter matching [15] and

wavelet-based matching [16]. Because this group involves multiple convolutions, it

should not be a candidate to detect spikes in real-time for multichannel systems.

From the review by Obeid et al. [13], we chose the NEO algorithm to detect spikes.

Spike classification processes include two main steps: extracting spike features,

and then classifying spikes by these spike features. Common spike feature extrac-

tion algorithms are based on principal component analysis (PCA, [17]) used in [18]

[19], the discrete wavelet transform (DWT, [20]) applied in [21][22], independent

component analysis [23] applied in [24][25], or discrete derivatives [26]. Other exist-

ing algorithms use waveform derivatives [27], the integral transform [28], inter-spike

intervals [29], or Laplacian eigenmaps [30]. For the second step of the classification

processes, algorithms sort similar spikes by k-means clustering [23], mean shift clus-

tering [27], Bayesian classification [31], template matching [32], neural network based

[33], super paramagnetic clustering (SPC) [34], or density grid contour clustering
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[35].

Spike feature extraction algorithms have been reviewed recently [36] while classi-

fication algorithms have been in need of a newer review since 1998. From the review

by Gibson et al. [36] and other criteria of the system design (e.g. high accurate

spike-feature extraction), we choose the wavelet transform approach along with the

SPC method to launch a spike-sorting module for the proposed system (more details

in Sections 2.4 and 2.5).

1.2 Thesis Overview

With the motivation discussed above, this thesis proposes a real-time neural signal

processing system for dragonflies. A part of this work is based on some pre-existing

designs by Routh et al. [6] and Melano [4]. Instead of recording from moths as be-

fore in the Higgins laboratory, this project studies the vision system of a dragonfly,

and fabricates an upgraded version of previous designs to process more channels and

digital signal flow faster. We also implement a new spike-sorting application mod-

ule for this upgraded version, which enables characterizing visual motion detection

neurons and employing these neurons as biosensors for robots.

The thesis is organized in seven chapters as follows. Chapter 2 provides a back-

ground on the neurological workings of the dragonfly ventral nerve cord, measur-

ing neural activity, and spike-sorting algorithms as well as neural signal processing

system models. Chapter 3 describes an analog processing module of the design.

Chapter 4 presents a digital processing module. The spike-sorting application is

described in Chapter 5. Chapter 6 shows experimental results for testing hardware

devices and the software module. The final chapter concludes with a summary and

future work for this report.
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CHAPTER 2

BACKGROUND

In this chapter, the visual receptive field properties of dragonfly descending neurons,

electrophysiological recordings, and the measuring of neural activity are discussed

in the first three sections. Then spike-sorting algorithms and a model of a neural

signal processing system are presented.

2.1 Target Selectivity Properties of Dragonfly Descending Neurons

Descending interneurons in insects are neurons that transfer signals from the brain

to the thoracic ganglia. In the dragonfly, there are eight large individual descending

neurons in the ventral nerve cord (VNC) that are visual target-selective [8]. The

locations of these eight interneurons in a cross section of the prothoracic ganglion are

indicated in Figure 2.1. These neurons have some similar characteristics (Table 2.1)

[8]. All of them descend from the brain and have very big axons in the VNC. They

all respond selectively to movements of small targets; therefore, they are called

target-selective descending neurons (TSDNs). According to the longitudinal tract

through which these neurons pass in the prothoracic ganglion, Frye et al. [9] named

these eight neurons as follows: DIT1, DIT2, and DIT3 for the dorsal intermediate

tract; and MDT1, MDT2, MDT3, MDT4, and MDT5 for the median dorsal tract.

Five of the eight TSDNs have strong directional preferences: MDT1, MDT2,

MDT4, MDT3, and DIT1. Frye et al. [9] identified the visual receptive field prop-

erties of these TSDNs by recording responses when moving a target in each of four

orthogonal directions on a 90o x 90o screen. The location and direction of the great-

est response to target movements are shown in Figure 2.2. MDT4 and DIT1 are

small-size selective while all others have a wide range of size preference. In these

experiments, the observed receptive field centers were consistent from animal to
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Figure 2.1: Locations of the eight TSDNs in the cross section of the prothoracic
ganglion. Left: The eight axons with a background detail. Right: a magnified view
of the outlined area in the left [8]. The white arrow show the MDT group.

Table 2.1: Some properties of the eight TSDNs. Abbreviation: Left (L), right (R),
top (T), dorsal (D), ventral (V), up (U), down (D), no directional (ND), small (S)
2o or 4o, large (Lg) 16o or 32o, all sizes(A) [8].

Cell MDT1 MDT2 MDT3 MDT4 DIT1 DIT2 DIT3 DMT1
Soma location in
brain.

LT RV LT RV LV RV LD LD

Directional pref-
erence.

U L ND D R L ND -

Preferred target
size.

A S Lg S S A A -
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animal but the borders were not. Across the preparations, the location and the

directional preference of the receptive fields remained constant, but the strength of

the response (vector length) and the size of the receptive field (number of vectors)

varied.

In summary, the strong selectivity responses of the eight dragonfly TSDNs to the

target sizes and the movement directions indicate that these neurons control oriented

flight responses to the image of a target in the dragonfly retina. This behavioral

function guides the dragonfly during the prey-tracking. Researchers really want to

get more insight into how these neurons respond when a freely behaving dragonfly

receives images of a real prey item or a fake target.

2.2 Electrophysiological Recordings

Electrophysiology is the study of the electrical properties of biological cells and

tissues. It involves measurements of the electrical activity of neurons, particularly

action potential activities [37]. Electrophysiological recordings can be classified into

intracellular and extracellular recordings. In the intracellular recordings, the tip of

a microelectrode is inserted inside the cell to measure the membrane potential. By

contrast, in the extracellular recordings, signals are recorded from outside of the cell.

Thus, in comparison to intracellular signals, the extracellular ones are much smaller

(only about µV , not mV ) , and the polarity is reversed as recording from across

the membrane. The magnitude and the shape of the extracellular signals vary with

the distance between the electrode tip and the cell. Extracellular recording results

can present the activity of a single cell (“single-unit”) or several cells (“multi-unit”)

depending on the size and placement of the electrode tip [38].

The microelectrode resistance and the capacitance in an electrophysiological

recording are two main sources of recording errors. The resistance depends on

several factors including the size of the electrode tip and the thickness of the cell

walls. Typical resistance values are from 10 MΩ to 50 MΩ with a 500 nm glass

micropipette tip or from 10 MΩ to 200MΩ with a 50 nm to 120 nm tip [39]. The



19

Figure 2.2: The visual receptive field properties of the eight TSDNs [9].
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resistance creates a voltage drop across the electrode which can produce biological

effects in the cell. To avoid this voltage drop, the instrument should have a small

input current (less than 1 nA). On the other hand, the capacitance in combina-

tion with the resistance create a low-pass filter that prevents the propagation of

the high frequency components of the signal and makes the signal distort [5]. The

capacitance includes the transmural capacitance (Ct) between the solution inside

the pipette and the biological tissue and the stray capacitance (Cs) between the

electrode’s stem and the lead joining to the preamplifier [40]. While the value of

Ct cannot be eliminated, the value of Cs depends on the length of the joining lead.

Normally, Cs is a few picofarads and can be reduced by placing the first amplifier

as close as possible to the electrode.

In electrophysiological recordings, the quality of collected data depends signif-

icantly on the presence of noise sources. Some sources of noise can be suppressed

(e.g., 50 Hz or 60 Hz hums from power supplies and mechanical interference from

surroundings) while others cannot be blocked (e.g., thermal voltage noise).

2.3 Measuring Neural Activity

An electrophysiological signal represents the potential between its reference potential

and the tip of the electrode. According to Lewicki [41], the largest component of

the current flow due to the potential changes is generated by the cellular action

potential. Other sources of signals which may come from axonal fiber bundles (also

called fibers of passage), or come from the field potential, introduce less prominent

components. These components are often much more localized and smaller or occur

at low frequencies, which can be easily filtered out from the action potential.

In an extracellular recording, there are several problems when measuring action

potentials. From an example segment of an extracellular recording signal (Fig-

ure 2.3), numerous different shapes of action potentials appeared. They may belong

to different relevant neurons. Next, a considerable amount of background noise

should be filtered out. Finally, spike overlaps appeared sometimes. When an over-
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Figure 2.3: Example of an extracellular signal segment recorded from a dragonfly
by Higgins, 2010. The amplitude is amplified by the commercial instrument in the
Higgins laboratory. The signal included the background noise and spike information.
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lap occurs, the height of a spike can be greatly distorted. If an action potential has

a trough that lines up with a peak of an action potential which is generated by a

background neuron, the spike will be missed. Then again, in threshold-based spike

detection methods, when some background spikes combine together to cross over

the threshold level, a false positive error may occur.

2.4 Spike Detection and Classification Algorithms

According to several recent reviews for spike detection and classification, this section

presents some efficient algorithms for real-time spike detection and classification.

2.4.1 Real-Time Spike Detection Algorithms

Based on recent evaluations [13] [36] [42], NEO and the simple threshold method

are the two most efficient algorithms to detect spikes in real time. Obeid et al. [13]

proposed a technique to evaluate the performance of spike-detectors by defining cost-

function scores. They concluded that the simple threshold method is just as effective

as applying more elaborate energy-based detectors. On the other hand, Gibson et

al. [36] used the probability of a right detection and the probability of a false

detection to evaluate spike detection algorithms. They showed that the stationary

wavelet transform method is the most accurate one, followed by NEO and the simple

threshold method. However, according to Gibson et al. [36], the NEO-based method

is less sensitive to the choice of a threshold level than the simple threshold method.

Hence, a proposed design for a neural signal processing system will be better if it

can support these two most efficient algorithms. While the threshold method is very

computationally simple, the NEO-based method is more complicated.

At first, NEO was introduced to highlight the spike peaks by computing the

energy difference between the current power of a signal and its power in adjacent

time intervals [16]. Then, in an interpretation of NEO, when the Wigner distribu-

tion (WD) [43] is taken as the instantaneous spectrum, the result is considered the

instantaneous energy of the high pass filtered version of a signal. This feature makes
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NEO an ideal detector of transients [44].

Let x(t) be a real process which is band limited with a spectrum Sxx(w) = 0

for |w| > B and x(nT ) be the uniformly sampled version of x(t) with a sampling

interval T < π
B

. For a discrete time signal, the non-linear energy of x(n), ψ [x(n)],

is defined by Kaiser [14]:

ψ [x (n)] = x2 (n) − x (n+ 1)x (n− 1) . (2.1)

Let x (n) be a combination of two uncorrelated signals x1 (n) and x2 (n). Let x1 (n)

and x2 (n) represent a background signal and a spike train, respectively. When

interpreting NEO, Mukhopadhyay et al. [44] proved the following relationship:

E{ψ [x (n)] } = Rx (n, n)−Rx (n+ 1, n− 1) (2.2)

where E{.} is an expectation operator, and Rx (n, n) is an autocorrelation of

x (n). Let W (n,w) denote the Fourier transform of the autocorrelation Rx (n, n).

Mukhopadhyay et al. [44] also showed that:

E{ψ [x (n)] } =

B∫
−B

W (n,w) (1− cos(2wT ))dw. (2.3)

Because the term (1 − cos(2wT )) acts as a high-pass filter [44], W (n,w) (1 −
cos(2wT )) is high-pass filtered version of W (n,w). Let Kx (n) be the ratio of the

energy in the high-frequency band to the total signal energy at an instant nT :

Kx (n) =

B∫
−B

W (n,w) (1− cos(2wT ))dw

B∫
−B

W (n,w) dw

. (2.4)
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According to Mukhopadhyay et al. [44], another representation for equation 2.3 is:

E{ψ [x (n)] } = Kx1 (n)Rx1 (n, n) +Kx2 (n)Rx2 (n, n) . (2.5)

Since a spike is characterized by localized high frequencies and an increase in in-

stantaneous energy, the second term in the right hand side of equation 2.5 does not

dominate until a spike appears. In other words, the expectation value will be much

greater than a threshold level whenever a spike appears. The expectation operator

always returns a positive value. Therefore, E{ψ [x (n)] } can do as an indicator to

detect spikes.

Applying the above interpretation, most NEO-based spike detection algorithms

([44], [45], [13], [36], [42]) have been introduced with an general adjacent time δ

rather than 1. Hence, equation 2.1 is rewritten as:

ψ [x (n)] = x2 (n) − x (n+ δ)x (n− δ) . (2.6)

A threshold level Θ is given by:

Θ = C
1

N

N∑
n=1

ψ[x(n)] (2.7)

where C is a constant which is used to tune Θ, and N is the number of samples.

2.4.2 Real-Time Spike Classification Algorithms

Among spike feature extraction algorithms, Sarna et al. [46] showed that the DWT

method outperformed the PCA method and the reduced feature set method (RFS,

[47]).The main reason is the fact that DWT can separate complex spikes that could

not be done by PCA and RFS methods due to the similarity of their temporal

profiles and the masking actions of the noise.

DWT relies on the wavelet analysis technique to extract features of a spike.

Basically, to find differences among spikes, DWT is based on the quantification of
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energy found in specific frequency bands at specific time locations. The following

mathematical equation describes briefly a wavelet transform (WT) (more details

in [20]). Let s(t) be a spike waveform which can be presented by WT coefficients

C(a, b).

C (a, b) =
1√
a

+∞∫
−∞

s(t)ψa,b(t)dt (2.8)

where ψa,b (t) = ψ
(
t−b
a

)
is an expanded or contracted and shifted version of a unique

wavelet function ψ(t) with a and b are the scale and the time localization, respec-

tively.

For algorithmic implementations, equation 2.8 is usually defined at discrete scales

and discrete times by choosing the set of parameters {aj = 2−j; bj,k = 2−jk} for

integers j and k [22]. Contracted versions of the wavelet function match the high-

frequency components, while dilated versions match the low-frequency components.

Among spike clustering algorithms, in a very early review, Lewicki [41] concluded

that the reviewed methods (Bayesian clustering, template-based, and classification

to the commercial package Brainwaves, which relied on the user to define the two-

dimensional cluster boundaries by hand) gave similar results if clusters were well

separated. However, for weakly separated clusters, the Bayesian clustering method

was the most accurate one. However, this review was published a long time ago;

thereby it could not cover recent algorithms. Furthermore, up to now, classification

algorithms have been still in need of a newer review. In the literature, the SPC

method has been suggested as a proficient tool of classification in several recent

published papers such as [22][34]. In this thesis, we also choose SPC to classify

spikes when building templates.

The SPC method is based on interactions between a data point (a spike) and

its K-nearest neighbors [34]. If the interactions are strong, spikes are more similar.

This method is implemented as a Monte Carlo iteration of a Potts model [48] which

suggests the behavior of ferromagnets and certain other phenomena of solid-state

physics.
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In the SPC method, the term ‘temperature’ is used to interpret the probability at

which the states of a number of neighboring data points change simultaneously [22].

At a relatively high temperature, all the points are switching randomly, regardless of

their interactions (paramagnetic phase). At a low temperature, all the points change

their states together (ferromagnetic phase). But, at a medium temperature (super

paramagnetic phase) only points in the same group change their states concurrently.

In a clustering application, the ferromagnetic phase, the paramagnetic phase, and

the super paramagnetic phase can be considered a classifying result of one single

cluster, several tiny clusters, and a number of medium-size clusters, respectively.

The SPC method first represents m features of a spike i by a point xi in an

m-dimensional space. Then it finds the interaction strengths between the point xi

and k nearest neighboring points. The interaction strength Jij between xi and one

of its neighbors, named xj, is given by [22]:

Jij =

 1
K

exp(−‖xi−xj‖
2

2a2
) if xi is one of K nearest neighbors of xj

0 otherwise.
(2.9)

where a is the average distance from xi to its K nearest neighbors.

From equation 2.9, Jij reduces exponentially when the Euclidean distance

‖xi − xj‖2 increases. A smaller distance results in a stronger similarity between

two spikes.

In the second step, SPC assigns each point xi to a random state s in a set

of q states. Then, N Monte Carlo iterations are run for different temperatures

using the Swendnsen-Wang algorithm [49] or the Wolff algorithm [50]. Blatt et

al. [49] recommended a setting of q = 20 states, K = 11 nearest neighbors, and

N = 500 iterations for clustering. With this setting, the clustering process would

mainly depend on the temperature parameter and is robust to small changes of other

parameters.
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2.5 Proposed Neural Signal Processing System

In electrophysiological recordings, signal amplitudes at the tip of the electrode range

from 50 µV to 500 µV (in extracellular recordings) or few millivolts (in intracellular

recordings). This signal is then amplified and filtered out from the noise. After

that, spikes are detected and processed further for specific applications.

We propose a real-time neural signal processing system with a combination of

a PCB-based hardware structure (Figure 4.1) and FPGA-based software modules

(Figure 2.5). The PCB-based hardware structure provides the analog signal record-

ing and digital signal processing functions. To avoid interference between the two

different formats of signal processing (analog and digital) as well as per the small-size

requirement for the system to be attached on a mobile robot platform, we construct

two separate PCBs: an analog PCB and a digital PCB. The analog PCB is an

upgraded version of the design by Melano [4] while the digital PCB is an upgraded

version of the design by Routh et al. [6] in our laboratory. The analog PCB is

employed with configurable cut-off frequencies to configure a suitable setting for a

particular recording condition. The digital PCB is equipped with an FPGA-based

microprocessor which can execute software modules for data processing tasks of the

proposed system.

Spikes of the input signal can be detected by a circuit block in the analog PCB

or by a software module in the digital PCB. While the hardware-based detector uses

the simple threshold method, the software-based one uses the NEO method.

To extract spike features, we use the DWT algorithm with a four-level decom-

position Haar wavelets setting. Then, we gather information to build templates by

clustering these spike features with a SPC software package provided by Quiroga et

al. [22]. In the SPC process, we use a temperature range from 0 to 20 in increments

of 0.01 and record the super paramagnetic phase at a minimum cluster size of 60

points. After that, based on the visual receptive field properties defined by Frye et

al. [9], we select a suitable cluster and take the average as a respective template.

Finally, we measure the correlation between a detected spike in real time with every
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Figure 2.4: Hardware structure design for the proposed system.

template (from the template set) to find a histogram of TSDNs.
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Figure 2.5: Implementation steps of selected algorithms for the software modules.
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CHAPTER 3

ANALOG PROCESSING MODULE DESIGN

This chapter discusses the analog PCB hardware structure which is upgraded from

existing works in the Higgins laboratory. The main duties of this PCB are filtering

out the noise, amplifying signals, and detecting spikes. Because this module design

contains several configurable devices with a serial bus interface, the last section of

this chapter is dedicated to a short description of how to program these devices.

The serial bus interface has been developed under several names such as TWI and

I2C though in this document we only use I2C as a general name for this type of

protocol.

3.1 Functional Diagram Design

The analog PCB can be viewed as a series of five processing stages (Figure 3.1).

Each stage handles a different function. The first stage has a differential input

preamplifier. The second stage has a high-pass filter (HPF) while the third one has

a low-pass filter (LPF). Both of them are designed to remove noise and undesired

frequency components. The fourth stage is a notch filter to remove the electricity

interference. The last stage is a spike detector.

The total gain of the module is contributed from several stages due to gain

bandwidth restrictions of the available components. The available amplifiers often

offer a gain-bandwidth product (GB) limited to 1M Hz [5]. The maximum gain

that can be extracted from a single amplifier is 100. In the meanwhile, the operation

bandwidth of the module should be around 10 k Hz [40]. Thus, to get a total gain

of around 1000, the signal needs to be amplified by a number of stages.
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Figure 3.1: Five stages of the analog signal processing module.

3.2 Component-Level Design

We choose main components for the proposed design according to desired functional

tasks (Section 2.5) and availability of suitable products.

3.2.1 Differential Input Preamplifier

The main idea of this stage is to transfer states from a very high microelectrode

resistance to a very low output resistance while maintaining the signal undistorted

[5]. This amplifier should have a high input resistance and a low input capacitance

[51]. Also, the component should have a high common-mode rejection ratio (CMRR)

[40]. From the design by Ortiz [5], the gain of this stage should be not too large to

avoid amplifying the DC offset (causing saturation). We select a INA111 [52] as a

suitable amplifier with a very good performance (Figure 3.2) and set the stage gain

to be 10.

3.2.2 Configurable High-Pass Filter with Non-Unity Gain

This stage not only works as a high-pass filter, but also provides the rest of the

required gain for the whole system. The configurable cut-off frequency of this HPF
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Figure 3.2: Typical performance curves of selected preamplifier [52]. The INA111
has a suitable gain response (left) and a high CMRR (right).

is provided by digital switches and potentiometers which can vary capacitance values

and resistance values under the control of I2C signals (Figure 3.3). In this diagram,

when R1 and R3 values are fixed, cut-off frequencies f01 = 1
2πR1C1

, f02 = 1
2πR3C2

are

controlled by switches on C1 and C2, and gains G1 = −R2

R1
, G2 = −R4

R3
are controlled

by potentiometers on R2 and R4.

Figure 3.3: Second-order high-pass filter at w0 with gain G. R2, R4 can be variable
resistors. C1, C2 are selected capacitors by digital switches. R2, R4 , C1, C2 will be
set by I2C signals.

3.2.3 Configurable Low-Pass Filter

To block undesired high frequencies, a second-order Butterworth low-pass filter using

the Sallen and Key topology [53] (Figure 3.4) was chosen [5]. The cut-off frequency
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is designed as 6 k Hz or 10 k Hz [54] by equation f0 = 1
2π
√
R1R2C1C2

[53]. To get a

maximally flat pass-band frequency response, a quality factor Q =
√
R1R2C1C2

C2(R1+R2)
is set

to 1/
√

2 or equivalently C1 = 2C2 with R1 = R2. Therefore, the cut-off frequency

is controlled by the values of C1 and C2.

Figure 3.4: Second-order Butterworth low-pass filter [53].

3.2.4 Configurable Notch Filter

When we collect an electrophysiological signal in a very wide range of bandwidth

(e.g., from 20 Hz to 10 k Hz), the power line interference at 50 Hz or 60 Hz should

be removed. To build this notch filter, we combine a first order low-pass filter and

a first order high-pass filter (Figure 3.5) [5]. If C = 15 nF , R should be 424 kΩ or

353 kΩ to get the notch at 50 Hz or 60 Hz, respectively.

3.2.5 Spike Detector

As mentioned in Section 2.5, this stage provides an optional implementation to

detect spikes. This feature of the system is necessary for the case of lacking a high-

speed microprocessor to execute several software modules concurrently. Since the

output of this stage is a chain of pulses (i.e. in a digital format), this output can

be used by an FGPA-based microprocessor in the next steps. The proposal for this

stage consists of two blocks: spike enhancement and spike detection (Figure 3.6).

While the first block increases the SNR at expected frequency contents, the second

one works as a threshold comparator.
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Figure 3.5: Configurable notch filter for 50 Hz network or 60 Hz network option.

Figure 3.6: Functional blocks for a spike detector .
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To emphasize a detected spike, two LPFs are set at different cut-off frequencies

in order to subtract the lower frequency content from the higher one. The values

of these two cut-off frequencies are decided upon by the type of recorded data

and the noise of the recording environment. Ortiz [5] suggested an operational

transconductance amplifier (OTA) to vary these cut-off frequencies. An OTA circuit

can work as a voltage controlled filter (Figure 3.7) where the cut-off frequency is

defined by equation 3.1 [55].

2πf0C

gm
=

RA

R +RA

(3.1)

where gm = 19.2 IABC at a room temperature (thermal voltage = 25.8 mV ) and

IABC is the amplifier bias current.

Figure 3.7: Example of a voltage controlled low pass filter. The cut-off frequency is
defined in equation 3.1 [55].

When varying IABC , gm is tuned and consequently f0 is set to a new value. In

our design, 1.4 k Hz and 5.3 k Hz (suggested by [56]) are set as default values for

these two LPFs.

The spike detection block is basically a model of a non-inverting Schmitt trigger

(Figure 3.8 [57]). In this positive feedback model, the output retains its value (high

or low) until the input goes over a level to trigger a change. In Figure 3.8, the
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threshold level is controlled by the proportion between R1 and R2 as follows.

Figure 3.8: Model of a Schmitt trigger [57].

If the trigger is currently at a high state (Vout = +VS), the input V+ is given by:

V+ =
R2

R1 +R2

Vin +
R1

R1 +R2

Vs. (3.2)

The comparator will switch to Vout = −VS when Vin goes over a low threshold

level of−R1

R2
Vs. To switch back to the high state, Vin needs to go over a high threshold

level of +R1

R2
Vs. In our spike detection block, a flexible reference voltage (Vref ) is

applied (Figure 3.9) in order to accommodate a particular recording experiment.

Vref , which is controlled by a potentiometer, determines two switching levels VH−to−L

and VL−to−H as in equations 3.3 and 3.4.

VH−to−L = Vref (1 +
R1

R2

)− Vs
R1

R2

. (3.3)

VL−to−H = Vref (1 +
R1

R2

) + Vs
R1

R2

. (3.4)

3.3 System-Level Design

Though the complete analog PCB is designed for eight channels (Figure 3.10), all

channels have a similar structure. Therefore, the detailed diagram of only one

channel is shown in Figure 3.11. Table 3.1 lists core components of the analog PCB

with their operating conditions. To fit well into a small rack of a hybrid bio-robot,
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Figure 3.9: Threshold setup with a flexible reference voltage.

the PCB should be very thin and small. Figure 3.12 and Figure 3.13 capture two

sides of a recent fabricated version in our laboratory. Table 3.2 shows its main

specifications.

3.4 Two-Wire Bus Interface Programming

The Inter-Integrated Circuit (IIC, I2C, or I2C) interface is a multi-master serial

single-ended computer bus invented by Philips [58]. Two Wire Interface (TWI)

or Two-Wire Serial Interface (TWSI) is defined by Atmel [59] and other vendors to

avoid conflicts with trademark issues. TWI devices are considered compatible to I2C

devices except for some particularities like general broadcast or 10 bit addressing

[58]. In the later part of the thesis, we use “I2C” as a general name for this type of

protocol.

The I2C protocol involves two bidirectional open-drain lines to send and receive

data: serial data line (SDA) and serial clock line (SCL). While SDA is used to

transfer data between master devices and slave devices, SCL defines a clock signal

that allows devices take turns in communicating. At the rising edge of a clock signal,

a bit of information is transferred from a master to a slave over the SDA line. At
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Figure 3.10: Schematic of the complete analog processing module.

Table 3.1: Operating conditions of the analog PCB.

Component Quantity Operating tem-
perature

Pins Voltage supply range

INA 8 −40◦C : +85◦C 8 ±6 V : ±18 V
OPA2111 8 0◦C : +70◦C 8 ±18V DC
OPA705 16 −40◦C : +85◦C 14 ±2 V : ±6 V

ADG 8 −40◦C : +85◦C 32 VDD −0.3V : +15V . VSS
+0.3V : −7V . VL −0.3V :
+7V .

X9258 16 −40◦C : +85◦C 24 V+ − V− < 12V . VSDA,SCL
−1V : +7V .

LM13700 8 0◦C : +70◦C 16 ±18V



39

Figure 3.11: Detailed diagram represents one channel.
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Figure 3.12: Fabricated analog PCB in the Higgins laboratory- side A.

Figure 3.13: Fabricated analog PCB in the Higgins laboratory- side B.
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Table 3.2: Specifications of the fabricated analog PCB.

Size 7.5” x 4” x 0.062”
Weight < 1 lb.
Voltage supplies +3.3 V; ±5V
Power consumption 0.5 W → 0.7 W
Bandwidth gain 100x, 10000x
Notch cut-off frequencies 50 Hz or 60 Hz
Notch rejection < −40 dB
LPF cut-off frequencies setting 4.7 k Hz or 20 k Hz
HPF cut-off frequencies setting 10 Hz or 100 Hz

the falling edge of a clock signal, the slave transmits data back to the master over

the same line. Figure 3.14 shows the network of I2C communication in the analog

PCB.

Because of sharing the same bus, all I2C devices must have unique addresses.

Together with hard-wired addressing bits (manufacturer-address bits), designers use

user-defined bits to name these devices. For example, with potentiometers of In-

tersil, four bits “0101” indicate the maker and four bits (A3A2A1A0) are used to

name sixteen sixteen potentiometer-chips [60]. With switches of Analog Devices, the

manufacturer uses only seven bits for addressing; four hard-wired bits of “1110” and

three user’s bits of “A2A1A0” to name eight switches on board [61]. I2C messages

have a format of four parts. The first part defines whether an 8-bit address or a

7-bit address type is used. The second one specifies address of the I2C device. The

third one names a particular component inside the device. The last part declare a

value of setting.

Each time we program these types of devices, we often want to assign a particular

value for the devices. For example, if we want to turn on or off digital switches

to connect the desired capacitor in the circuit, we send a message over the I2C

communication network. This message contains the address bits and instruction

codes. Table 3.3 [61] lists several instruction codes for this programming example.
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Figure 3.14: Network structure of the I2C communication in the analog PCB. Each
channel has one switch and two potentiometers. Eight channels share the same SDA
and SCL buses with the master.

Table 3.3: Instructions for the I2C code to turn on/off switches.

Switch location “on”(hex) “off” (hex)
X0 and Y0 80 00
X2 and Y2 92 12
X1 and Y0 88 08
X3 and Y2 9A 1A
X4 and Y4 A4 24
X7 and Y6 CE 4E
X5 and Y4 AC 2C
X6 and Y6 C6 46
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CHAPTER 4

DIGITAL PROCESSING MODULE DESIGN

This chapter discusses the digital PCB design. Key tasks of the digital PCB include

converting analog signals to digital signals, configuring the whole system, execut-

ing a spike-sorting application, and transmitting data. In the last section, a brief

description of how to set up the digital PCB for experiments is also given.

4.1 Functional Diagram Design

The digital PCB is described with its functional blocks in Figure 4.1. The analog-

to-digital converter (ADC) converts the flow of analog signal inputs into their digital

format versions. The microprocessor executes software modules. To support this

microprocessor, there are blocks of clock-generating, memory, and digital power

supplies. Followings are details of some principal blocks.

Figure 4.1: Functional blocks of the digital PCB.
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4.2 Component-Level Design

We selected digital components upon some specific design criteria and availability

of suitable products. Following are details of selected components.

4.2.1 Analog-to-Digital Converter

There are several design requirements for a selected ADC. First, the ADC should

support a voltage range of bipolar 5 V to deal with both positive and negative action

potentials. To sort spikes more accurately, the ADC should provide high-resolution

data. Because neural signals have high frequency components [62], the ADC should

operate with high sampling rates in the 50 k Hz range. Other requirements such

as small space occupation and low power consumption are also critical. In this

project, an 8-channel 12-bit ADC with ±5 V analog input range was chosen with a

functional diagram illustrated in Figure 4.2 [63]. The basic operation of this ADC

is described briefly below.

To preserve phase information across the multichannel ADC, all input channels

have dedicated amplifiers for track and hold (T/H). The T/H circuit is controlled

by an input CONVST. When CONVST is low, the T/H circuit tracks the analog

input. When CONVST is high, the T/H circuit holds the analog input.

A rising edge of CONVST is a sampling instant of the analog input. To get 12-bit

accuracy, CONVST must be low for at least 100 ns and an acquisition time (tACQ)

should be limited from 100 ns to 1 ms [63]. To start a conversion, the ADC receives

a low CONVST signal for a duration of tACQ. The T/H circuit acquires the signal

while CONVST is low, and the conversion begins on the rising edge of CONVST.

The end-of-conversion signal (EOC) is low whenever a conversion result becomes

available to be read. The end-of-last-conversion signal (EOLC) goes low when the

last conversion result is available. Until the last conversion is read, CONVST is high

to avoid aborting the current conversion. Before CONVST is low, there must be a

period of bus inactivity (tQuiet) for at least 50 ns [63]. The timing of a conversion

for eight channels is illustrated in Figure 4.3.
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Figure 4.2: Functional diagram of the selected ADC [63].

Figure 4.3: Timing of an A/D conversion for eight input channels [63].
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Under typical operating conditions, when fCLK = 15 M Hz (internal clock

mode), tACQ = 100 ns, and tQuiet = 50 ns, the number of clock cycles until reading

the last result is 33 cycles (total conversion time = 2.2 µs) and the data throughput

Φ will be 413 ksps/channel (from Equation 4.1 [63]).

Φ =
1

tACQ + tQUIET + 12+3(N−1)+1
fCLK

(4.1)

where N is the number of active channels and fCLK is the clock speed.

4.2.2 Data Processing

The spike data processing involves a soft-core processor and a memory subsystem

with basic datapaths as shown in Figure 4.4. The soft-core processor is generated in a

hardware description language (HDL). Most FPGA devices have on-chip memories.

These memories’ capacities are often not adequate for multi-channel neural signal

processing tasks. Hence, it is necessary to implement external memories (SRAM

or Flash). The parallel input/output interface and serial input/output interface

enable the FPGA system to communicate with other parts of the system. An initial

configuration step is required for FPGA-based systems whenever loading a HDL-

coded design.

Because of the mobility requirement and convenience for power saving, an auto-

matic configuration ability of this FPGA device is preferred. From the recommenda-

tion of the FPGA manufacturer [64], we use an embedded memory as a configuration

memory. It can support the active parallel (AP) configuration with a recommended

connection diagram between the processor and the memory (Figure 4.5).

4.3 System-Level Design

Similar to the system-level design requirements of the analog PCB, the digital PCB

also needs to have small dimensions, consume little power supply, and introduce

as little noise as possible. Table 4.1 lists key components with their operating
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Figure 4.4: Datapaths for data processing in the digital module.
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Figure 4.5: Recommended connection for the embedded memory to support the AP
mode [64].

conditions. Figure 4.6 captures a recent fabricated version of the digital PCB in the

Higgins laboratory.

4.4 FPGA-Based System Configuration

To launch a software application on an FPGA system, a tool of system integration

(SI) made by the manufacturer of the FPGA is often utilized. The recommended

system design flow is described in Figure 4.7. The tool generates two kinds of

outputs: HDL files for the hardware flow and a system description, also called

board support package (BSP), for the software flow [64].

A high-level description of the system architecture can be illustrated in individual

blocks (Figure 4.8) or in a single block (Figure 6.6). Blocks are designed at a high

level of abstraction using HDL components. The system fabric that connects the

design blocks together is generated automatically by a SI tool. Once the soft-

core processor is generated, the first-time FPGA configuration is performed with a
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Table 4.1: Operating conditions of main components in the digital PCB.

Component Operating tem-
perature

Pins Power supply Footprint
(mm)

ADC −40◦C : +85◦C 48 5V 1.3mA 7× 7
Flash −40◦C : +85◦C 64 2.3V → 3.6V 10× 13
FPGA 0◦C : +85◦C 484 internal logic:

VCCINT = −0.5V → 1.8V .
output buffer:
VCCIO = −0.5V → 3.9V .
PLL:
VPLL = −0.5V → 1.8V .

23× 23

Bluetooth −40◦C : +85◦C - 3V → 3.6V 13.4 ×
25.8

Figure 4.6: Recently fabricated digital PCB version in Higgins laboratory.



50

Figure 4.7: Recommended system design flow for FPGA-based systems [64].
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desktop computer. Then, an application is loaded into the memory and is executed

by the configured FPGA.

Figure 4.8: Block diagram of a soft-core processor at high level.
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Figure 4.9: Black-box view for the soft-core processor at high level.
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CHAPTER 5

SPIKE-SORTING SOFTWARE APPLICATION

This chapter builds a software application module for the discussed hardware struc-

tures in the two previous chapters. This software application is designed to sort out

spikes from neural signals recorded from dragonflies. After discussing the neural

information interpretation, the main data processing procedures are presented. The

data flow for the whole module is then depicted, followed by pseudo-code of the

principal procedures.

5.1 Neural Information Interpretation

As discussed in Chapter 2, the eight descending neurons called TSDNs contain

the visual “sensing” signals from the brain when a dragonfly is seeing a moving

target. If we can collect electrophysiological signals from these TSDNs, we can use

the visual receptive field properties discovered by Frye et al. [9] to guide a robot

platform. For that purpose, we need to detect when and which TSDN fires a spike

from given recording signals. A time instant of firing can be found by applying a

spike-detection algorithm (discussed in Section 2.4). To know which one of the eight

TSDNs a spike belongs to, we use a template-matching method. Specifically, if a

detected spike form matches very well (quantified by a high correlation coefficient)

with a spike-template of a TSDN, that spike is considered belonging to that TSDN.

We build spike-templates for each of the eight TSDNs by giving special visual

stimuli then collecting appropriate spike-form samples. These special visual stimuli

are designed to strongly stimulate a particular TSDN according to given properties.

For example, in experiments by Frye et al [9], if a moving target starts from the

bottom right corner of a stimulus screen with anterior orientation, there will be

spikes that mostly come from the MDT2 neuron. After detecting all spikes in this
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Table 5.1: Visual stimulation arrangement and corresponding templates.

Orientation Starting at Segment Templates

Posterior Bottom far right Early DIT3

Posterior Bottom far right Later DIT1

Anterior Bottom far right Whole MDT2

Dorsal Top center Whole MDT1

Dorsal Top left Whole MDT3

Ventral Bottom right Whole MDT4

Table 5.2: Stimulus orientation with respect to the animal is denoted by angle in
experiments of the Higgins laboratory.

Direction Degree
Dorsal 270o

Ventral 90o

Posterior 0o

Anterior 180o

stimulation case, we can cluster them to find the largest group of similar spike

samples. The average spike form of this group is then considered a spike-template

of MDT2. With this approach, the thesis builds a total of six templates and names

them after the respective TSDNs. Five templates are for all strongly directionally

selective neurons (MDT1, MDT2, MDT3, MDT4, and DIT1). The sixth template is

for DIT3, serving as an example of a neuron that is not strong directionally selective.

These six spike-templates are built upon the specifications of visual stimulation

arrangements (Table 5.1). In our experiments, to record electrophysiological signals

from the ventral nerve cord of a dragonfly, the dragonfly’s eyes are upside down

(Figure 5.1). Hence, we denoted the orientation of a stimulus with respect to the

animal by angle (Table 5.2).

Referring to Section 2.1 for the visual receptive field properties, when analyzing

the 270o stimuli starting at the left corner of the stimulus screen, spikes that come

from MDT3 would dominate the observation. Therefore, if we cluster all detected
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Figure 5.1: The dragonfly’s eyes are upside down in experiments of the Higgins
laboratory.

spikes, the largest class would present MDT3 spikes. Similarly, with the 270o stimuli

starting at the right corner, the largest class of spikes after clustering would present

MDT1 spikes. In the same way, we find MDT4, MDT2, DIT3 and DIT1 from the

data sets containing stimuli of 90o , 0o, and 180o.

Once these templates are built, they will be used to sort out spikes by the

template-matching method. Finally, the information of when and which TSDN

fired a spike will be used to control a robot platform.

5.2 Neural Signal Processing

From the above interpretation, in the software module, there are two main steps

of data processing: building spike-templates and sorting out spikes. The former

constructs templates from several stored data sets. Thus, this phase is not executed

in real time. By contrast, the latter matches these templates with detected spikes

in real time. Hence, to provide the desired functionality, the software application

module is designed to perform both non-real-time procedures (shown in the diagram

of Figure 5.2) and real-time procedures (shown in the diagram of Figure 5.3).

In the data flow of the non-real-time procedures, there are four chief software-

based functions: detecting spikes with the NEO algorithm, extracting spike features

with the DWT algorithm, clustering spikes with the SPC method, and building

templates with the averaging method. Signals from the stored data set are analyzed

with the NEO method to extract spikes. Then, spike features are found by using
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Figure 5.2: Data flow diagram of non-real-time procedures to build the templates
from the data sets of the special stimuli.
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the wavelet decomposition method. Based on these features, spikes are clustered

with the SPC method into classes. The corresponding spike-template is built by

averaging spike-forms of the largest class.

In the data flow of the real-time procedures, spike detection can be performed

by a circuit in the analog PCB or by the software-based NEO method. Then, spikes

are extracted from real-time recorded signals. Finally, these spikes are compared

with predefined spike-templates. If a spike matches well with a spike-template, the

time instant and the corresponding TSDN are written in a histogram.

5.2.1 Spike Detection Pseudo-Code (Algorithm 1)

As we described in the review in Section 2.4, we choose to detect spikes with the

software-based NEO method. From our experiments, the adjacent time parameter

is set to δ = 4 in equation 5.1 to find the NEO data:

ψ [x (n)] = x2 (n) − x (n+ 4)x (n− 4) (5.1)

where x (n) is the spike signal at the time instant of n.

The threshold level for the NEO data is chosen with the parameter C set to

C = 8 in equation 5.2

Θ = 8
1

N

N∑
n=1

ψ[x(n)] (5.2)

where N is the number of samples.

In Algorithm 1, x is a neural signal and y is the output spike data. Whenever

the NEO data of x suddenly jumps over the threshold Θ, one spike is counted and

y is copied from x for a spike duration M .

5.2.2 Spike Extraction Pseudo-Code (Algorithm 2)

This function is used only in the non-real-time data flow to build spike-templates for

TSDNs. From Section 2.4, we create a wavelet decomposition vector for each aligned
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Figure 5.3: Data flow diagram of real-time operation in the system. The templates
built from the non-real-time procedures are used to match a spike.
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Algorithm 1 Spike detection with the NEO method.

Input:
fs, % sampling rate
x; % neural signal

Constant:
M , % spike length
δ, % adjacent time interval
C, % constant varies threshold

Output:
y, %spike signal
count; % number of spikes detected

Begin
N = length (x) ;
FOR n = δ + 1→ N − (δ − 1)
ψ [x (n)] = x2 (n) − x (n+ δ)x (n− δ);

ENDFOR

T = C 1
N

N∑
n=1

ψ[x(n)];

WHILE (! end of x)
IF((ψx(n− 1) < T ) & (ψx(n) > T ))

Copy y from x during a spike length;
count ++;

ENDIF
ENDWHILE
End;
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spike to extract spike features. These spike features are stored in a matrix for every

spike.. Spikes having similar features will belong to the same group of spike-forms.

In our experiments, to save computation time, we reduce the dimension of the vector

by selecting the top ten most significant coefficients.

Algorithm 2 Feature extraction with the DWT algorithm.

Input:
N , % number of spikes;
x; % is an aligned spike set matrix

Constant:
L, % spike length

Output:
y; % is a matrix of feature coefficients

Begin
FOR i = 1→ N
C(i,1→L) = wavelet decomposition of ith spike;

ENDFOR
Take the top ten most significant coefficients % Reduce the matrix dimension
End;

In Algorithm 2, the input x is an aligned-spike-set matrix and y is the output

matrix of feature coefficients. The vector of coefficients C(i is found from the wavelet

decomposition of the ith spike where i is an integer index. Finally, the dimension of

the coefficient matrix is reduced to save computation time.

5.2.3 Template Building Pseudo-Code (Algorithm 3)

This function is the final step of the non-real-time data flow to build spike-templates.

After finding features of all spikes, we cluster them into groups. The largest group

often provides the suitable information to build an appropriate template. Though

we have groups clustered automatically, we assess reasonable template information

manually. Hence, the performance of the whole application depends not only on the

special visual stimuli we set up, and on the rightness of the receptive field properties

discovered by Frye et al. [9] but also on the experience of the person who assesses

the classes for template information gathering.

In Algorithm 3, the input x is a stored data set and temp is a template we want
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Algorithm 3 Building templates.

Input:
x; % raw data from data set of special stimuli

Output:
information, % template information sets
temp; % a template we want to build

Begin
y= NEO detection(x);
z= Spike alignment(x,y);
c= Feature extraction(z);
classes= Clustering(c);
information =Saving (classes,z);
temp= Select class(classes,y);
End;

to build. After finding spike features of x, a clustering function will return classes

of spikes. We select a suitable class as a basis for the corresponding template temp.

This function is repeated with different data sets for every template we want to

construct.

5.2.4 Template Matching Pseudo-Code (Algorithm 4)

This function is executed in the real-time data flow. It uses the templates that are

previously built to match every spike that the system detects. The relevant neuron

corresponds to the best-matched template, i.e., the one that has the highest corre-

lation coefficient with the spike (Equation 5.3). The highest correlation coefficient

should also be higher than a level C that we expect the assignment is true.

rXi,Yj =
C{Xi, Yj}
σXi

σYj
(5.3)

where rXi,Yj is the correlation coefficient between the ith spike of a spike set X and

the jth template of a template set Y . C{Xi, Yj} is the covariance of Xi and Yj. σXi

and σYj are the variances of Xi and Yj, respectively.

In Algorithm 4, the input X is an aligned-spike-set matrix and the input Y is

a set of templates. rXi,Yj is the correlation coefficient between the ith spike of X
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and the jth template of Y . rXi,Yj is calculated for every detected spike and every

template. When comparing a spike with every spike-template, the largest coefficient

is chosen and stored as z. C is the level to assume a template matching is right. In

most cases, we set C = 0.9. If z is greater than C then the information of the right

template and time instant is written in a histogram.

Algorithm 4 Template-matching.

Input:
X, % is an aligned spike set matrix
N , % number of spikes
L, % spike length
C, % expected correlation level
Y ; % is a set of templates

Output:
histogram;

Begin
FOR i = 1→ N

FOR j = 1→ L

rXi,Yj =
C{Xi,Yj}
σXi

σYj
;

match(i, j) = rXi,Yj ;
ENDFOR
z = max{match(i, :)} ;
IF z ≥ C

FOR j = 1→ L
IF match(i, j) = z
match(i, j + 1) = j;

ENDIF
ENDFOR

ENDIF
ENDFOR
Record name of template and time instant;
End;

In summary, the above procedures of the software module provide two stages

of neural signal processing for dragonflies to interpret neural information to elec-

trical control signals. This software module is capable of accommodating future

modifications for different applications of the proposed system.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter illustrates the main results of the two sub-projects within this thesis:

validating the two fabricated PCBs and testing the spike-sorting software application

with biological data sets. Each section presents information and methods along with

the observed results.

6.1 Validating Two Fabricated PCBs

To characterize the analog PCB, we checked the gains and the cut-off frequencies of

the analog PCB by using artificial signals and tested the functionality of the spike

detection circuitry by using a biological analog signal. The analog PCB was verified

independently from the digital PCB by using an I2C-USB converter to communicate

through a desktop computer. With this tool, we can send I2C messages to the analog

PCB and set configurable parameters.

By programming I2C devices (Section 3.4 for more details), we validated the

optional cut-off frequencies for the HPF and the LPF. For example, we set two

switch cut-off frequencies for the HPF, 10 Hz or 100 Hz. For the case of 10 Hz, we

turned on switches X2-Y2 and X0-Y0 while X3-Y2 and X1-Y0 were off. For the case

of 100 Hz, we turned on X3-Y2 and X1-Y0 while X2-Y2 and X0-Y0 were off. For

the notch filter setting, we set two cases of notch frequencies, 50 Hz or 60 Hz. We

programmed potentiometers to have the settings of 84 kΩ and 42 kΩ for the case

of fnotch = 50 Hz. For the case of fnotch = 60 Hz we programmed potentiometers to

have the settings of 13 kΩ and 6.5 kΩ.

The two procedures we used to validate the digital PCB are checking the power

consumption and configuring the FPGA. We supplied this PCB with a DC voltage

supply of ±9V and plugged into a host computer through a USB-Blaster download
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cable which sends configuration data from the computer to a standard 10-pin header

connected to the FPGA. We used the Quartus version 10.0 software as an SI tool

to build the soft-core processor for the FPGA. Finally, we tested this FPGA with

an application that was implemented in the C programming language.

6.1.1 Analog PCB Frequency Response

We used a function generator to find the frequency responses of the analog PCB

(Figure 6.1, Figure 6.2, and Figure 6.3). With switch settings of fHPF = 10 Hz

and fnotch = 50 Hz, Figure 6.1 showed a notch with a narrow stop-band at 40 dB of

around 10 Hz. Because the notch is very close to the cut-off frequency, the measured

3dB point fell at 270 Hz.

Figure 6.1: Frequency response with setting fHPF = 10 Hz and fnotch = 50 Hz. A
notch at fHPF = 50 Hz was very clear with a narrow stop-band of around 10 Hz
width at 40 dB. The measured 3 dB point fell at 270 Hz.

Figure 6.2 illustrates the frequency response with switch settings of fHPF = 100

Hz and fLPF = 5 k Hz. The measured 3 dB points for the HPF and the LPF

were around 250 Hz and 3800 Hz, respectively. With switch settings of fHPF = 100

Hz and fLPF = 20 k Hz, the measured 3 dB points for the HPF and the LPF

were around 250 Hz and 12000 Hz, respectively (Figure 6.3). Though the cut-off
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frequencies did not exactly match the theoretical settings, this fabricated PCB still

meets the demands of the research.

Figure 6.2: Frequency response with switch settings of fHPF = 100 Hz and fLPF = 5
k Hz. The measured 3 dB points for the pass-band were around 250 Hz and 3800
Hz.

6.1.2 Hardware-Based Spike Detection Functionality

We tested spike detection in the analog PCB with a biological signal (Figure 6.4).

Figure 6.5 shows a photo of the oscilloscope during the detecting period by the

circuit. The circuit detected spikes at very high speed, but because of the using

very simple threshold algorithm it had a quite high false positive rate.

6.1.3 FPGA Configuration for the Digital PCB

Immediately after power-up, the digital PCB consumed a low electric current

(around 70 mA). After the soft-core processor was generated successfully, the con-

figuration file was loaded to the FPGA. During the process of configuration, the

electric current of the digital PCB was up to about 130 mA. When the process

finished, the current returned to the initial value.
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Figure 6.3: Frequency response with switch settings of fHPF = 100 Hz and fLPF =
20 k Hz. The measured 3 dB points for the pass-band were around 250 Hz and
12000 Hz.

Figure 6.4: Biological data set used to verify the spike detection circuit. Index =
time× sampling rate.
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Figure 6.5: Oscilloscope snapshot during verification of the spike detection circuit.
The top signal is the raw input signal. The bottom signal presents the detected
pulses at the output of the circuit.

From the proposed design for the data processing module (Section 4.2.2), we

built a soft-core processor (Figure 6.6) for the FPGA with the manufacturer’s sys-

tem integration tool. This tool generated two kinds of outputs: HDL files for the

hardware flow and a system description (also called board support package (BSP))

for the software flow. Using a host computer and the JTAG communication (“Joint

Test Action Group” standard), we loaded these output files into the FPGA for the

configuration step.

After configuring the FPGA successfully, we started loading a software applica-

tion for this processor. The application needed to be programmed in C language.

However, we utilized the Matlab programming tool to design the spike-sorting ap-

plication module of the proposed system (Chapter 5). Hence, in order to test the

system further, we had to convert the current application module to the C language

version. When finishing this task, the application is loaded into the memory and is

executed by this configured FPGA. We have not passed this step of testing because

we have not been able to load the testing application into the memory device of

the current fabricated digital PCB. The problem might be some damage in some

internal parts of the components when we tried to fabricate and populate the boards

by ourself. We should have them fabricated by a professional service provider. This

problem can be solved in future projects of the Higgins laboratory.
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Figure 6.6: Black-box view for the soft-core processor at high level.
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6.2 Testing the Spike-Sorting Software Module

We tested the spike-sorting module with raw data sets collected from dragonflies in

the Higgins laboratory. The settings of the preparations for these raw data sets are

described as follows. The dragonfly’s eyes were upside down (Figure 6.7) to make

recordings from the ventral nerve cord more conveniently. The stimulus screen had

a size of 1440 × 900 pixels and was put next to the dragonfly. An example of

the stimulus’s starting point location (co-ordinates (x, y)) and its moving direction

is shown in Figure 6.8. These recordings were implemented with a single hook

electrode around the ventral nerve cord. The recorded signal was then stored in a

digital format at a sampling rate of 50 k Hz.

We first present the template set that was built with the above data sets. We

then show results of sorting out spikes with arbitrary stimuli.

Figure 6.7: The dragonfly’s eyes are upside down in experiments of the Higgins
laboratory.

6.2.1 Templates for TSDNs

According to the neural information interpretation discussed in Section 5.1, we built

templates for TSDNs with data sets that have corresponding visual stimulus arrange-

ments as described in Table 6.1.

We implemented the non-real-time data flow (Section 5.2) to build templates.

Referring to Section 5.2.3 for how to collect information for templates from given

data sets, we gathered spike-pattern information for all six templates (Figures 6.9
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Figure 6.8: Example of a small moving target visual stimulus starting at co-ordinates
(x, y) = (700, 0) and moving at an angle of 70o.

Table 6.1: Selected data sets to build templates.

Corresponding
templates

Data set name Stimulus Orien-
tation

Starting location
(pixels)

Data segment
(index)

DIT3 S102 Posterior 1440× 200 20000-50000
DIT1 S102 Posterior 1440× 200 50000-80000
MDT2 S410 Anterior 1300× 200 30000-90000
MDT1 S12705 Dorsal 902× 900 33000-100000
MDT3 S12714 Dorsal 263× 900 33000-100000
MDT4 S12307 Ventral 1000× 0 30000-80000
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Table 6.2: List of figures showing information for each template from spike patterns.

Figure number Template information
6.9 Information to build the MDT3 template.
6.10 Information to build the MDT1 template
6.11 Information to build the MDT4 template
6.12 Information to build the MDT2 template
6.13 Information to build DIT3 template
6.14 Information to build DIT1 template

to 6.14, listed in Table 6.2).

Figure 6.9: The MDT3 template and the waveforms used to build it.

Finally, we had the whole template set as shown in Figure 6.15 and Figure 6.16.

We found that DIT1 and DIT3 had a similar amplitude range but they were different

in the first half of their shapes. All the MDT group had a smaller amplitude range

(just about ±1 V ) than the DIT group had (±3.2 V ).
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Figure 6.10: The MDT1 template and the waveforms used to build it.
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Figure 6.11: The MDT4 template and the waveforms used to build it.

Figure 6.12: The MDT2 template and the waveforms used to build it.
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Figure 6.13: The DIT3 template and the waveforms used to build it.

Figure 6.14: The DIT1 template and the waveforms used to build it.
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Figure 6.15: The whole set of templates previously shown in separate subplots to
compare their amplitude ranges. Each subplot shows a spike length in time of 3.5 ms
(horizontally) and an amplitude range of ±3.5 V (vertically). The top left is DIT1.
The top center is DIT3. The top right is MDT1. The bottom left is MDT2. The
bottom center is MDT3. The bottom right is MDT4.
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Figure 6.16: The whole set of templates showed in one plot to compare their shapes.

6.2.2 Spike Sorting with Arbitrary Stimuli

In this section, we applied the template-matching method (discussed in real-time

data flow of the software application module (Section 5.2) that uses the above tem-

plate set to sort out spikes from arbitrary stimuli. To validate the whole template

set, we tested again with new data sets that had similar settings to the ones we used

to build templates, but were recorded in different preparations. We tested several

different settings of stimuli starting at 700×0, 902×900, 263×900, 1440×200, and

868 × 0 moving in directions of 90o, 270o, and 180o. Results are shown in Figures

6.17 to 6.21.

When testing with the stimulus having orientation of 90o, more MDT4 spikes

appeared (with a high correlation level of 0.9, Figure 6.20) if the stimulus started at

868× 0 co-ordinates than starting at the bottom center of the screen (e.g. 700× 0,

Figure 6.17). When the angle was 270o, spikes from MDT1 dominated the plot if

the stimulus started at the top center (e.g. 902×900, Figure 6.18) while more spikes
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Figure 6.17: Testing the template set with data set S808, 90o start at 700×0. Some
MDT4 were indicated (with markers) with a correlation of 0.9. Markers > are for
detected MDT4.
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Figure 6.18: Testing the template set with data set S12705, 270o start at 902× 900.
Several MDT1s were indicated (with markers) with a correlation of 0.9. Markers x
are for detected MDT1.
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Figure 6.19: Testing the template set with data set S12714, 270o start 263 × 900.
MDT3 dominated among DIT1 and MDT4 (with markers) with a correlation of 0.9.
Markers for detected neurons: x for MDT1, v for MDT3, and > for MDT4.
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Figure 6.20: Testing the template set with data set S12519, 90o start 868×0. When
the angle is 90o and closer to the right, more MDT4s appeared (with markers) with
a correlation of 0.9. Markers > are for detected MDT4.



81

Figure 6.21: Testing the template set with data set S101, 180o from 1440 × 200.
More DIT3s were indicated than DIT1s (with markers) with a correlation of 0.9.
Markers for detected neurons: + for DIT1 and * for DIT3.
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from MDT3 along with few spikes from MDT4 and few spikes from MDT1 appeared

in the case of starting at the top left (e.g. 263× 900, Figure 6.19). When the angle

was 180o and starting from the bottom at far right (e.g. 1440 × 200), more spikes

from DIT3 appeared than from DIT1 (Figure 6.21). These observations strongly

agree with the visual receptive field properties of dragonflies presented by Frye et

al. [9]. This fact validates the template set built in the above section for the sorting

purpose.

We sorted out spikes with three different arbitrary settings of the stimulus start-

ing at 700 × 0 and 600 × 0 moving in directions of 48o, 55o, and 70o. Results are

shown in Figures 6.22 to 6.24. When the angle was small but not orthogonal to the

axes of the screen (e.g. 48o and 55o), only DIT3s were indicated (Figure 6.23, 6.22).

If the angle was also not orthogonal to the axes of the screen but closer to 90o (e.g.

70o), DIT1s appeared but still less than DIT3 (Figure 6.24). All of these observed

results also agree with the investigation of visual receptive field properties by Frye

et al. [9].
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Figure 6.22: Testing the template set with data set S201, 48o from 700× 0. When
the angle was small but not orthogonal, only DIT3s were indicated (with markers)
with a correlation of 0.9. Markers * are for detected DIT3.



84

Figure 6.23: Testing the template set with data set S316, 55o from 700×0. When the
angle was not orthogonal but closer to 90o, more DIT3s than DIT1 were indicated
(with markers) with a correlation of 0.9. Markers for detected neurons: + for DIT1
and * for DIT3.
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Figure 6.24: Testing the template set with data set S12202, 70o from 600 × 0.
When the angle was not orthogonal but closer to 90o, more DIT3s than DIT1 were
indicated (with markers) with a correlation of 0.9. Markers for detected neurons: +
for DIT1 and * for DIT3.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

With an approach using hybrid bio-robotics, this project proposes a real-time neural

signal processing system for dragonfly ventral nerve cord recordings. The visual re-

ceptive field properties of eight dragonfly TSDNs were used to construct the method

for spike sorting in the proposed system and to verify the observed experimental re-

sults.

The proposed architecture consists of different modules, including analog and

digital PCBs, and a software application. The analog PCB has five functional

blocks: a preamplifier, a HPF, a LPF, a notch filter, and a spike detector. The

digital PCB is comprised of an analog-to-digital converter, a data processor with

an FPGA-based microprocessor, and a data transmitter (with wired and wireless

methods). The application module contains real-time and non-real-time procedures

to build templates and to create a histogram of spike sorting.

We validated the fabricated PCBs and tested the spike-sorting software appli-

cation with real neural data sets. From observed results, we found that the DIT1

template and the DIT3 template had a similar amplitude range. But DIT1 was

different from DIT3 in the first half of the shapes. The MDT group had a smaller

amplitude range than the DIT group had. In the final testing session, the whole

template set was matched with spikes detected from arbitrary stimuli. Results con-

firmed that the template set agrees with the visual receptive field properties and can

be used for spike sorting. In summary, the proposed system provides a module to

process visual information from dragonfly TSDNs in real time for dragonfly hybrid

bio-robots.
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7.2 Future Work

Several projects can be developed from this study. There are some limitations

found in the fabricated PCBs when we test the proposed system design. Firstly,

though the size of the current PCBs are small enough for the robot platform in

Higgins laboratory, the PCB should be smaller in order to fit a newer robot platform

design in the future. We can reduce the size of the analog PCB by choosing new

models of digital switches and potentiometers or finding a new method to vary the

capacitance and resistance components in the circuit. Currently, these components

cause a complicated I2C communication network and a large space consumption.

Additionally, we can further investigate the real-time operation of the system. We

have not tested the digital PCB with the spike-sorting application in real time due

to the disability of loading applications to the memory in the current fabricated

digital PCB. This problem might come from some damage in some internal parts

of the components when we tried to fabricate and populate the boards. We should

have them fabricated by a professional service provider. These problems can be

solved in future projects of the Higgins laboratory.

Though this system is aimed to propose a real-time visual motion detection

module for dragonfly hybrid bio-robots, the design can be modified for another kind

of animal. Hence, the system may help better understand the representations and

computational architectures used by different biological systems in neuroscience.

Additionally, different spike-sorting algorithms can also be applied to the proposed

architecture. Consequently, the system can be used to evaluate recent spike-sorting

algorithms with real neural signals instead of simulated ones.
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