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ABSTRACT

Organisms such as bees and flies are superb at visually-guided nav-
igation in real-world environments. We have implemented visual
motion processing algorithms inspired by the visual systems of in-
sects in custom analog/digital VLSI vision chips. In this paper
we describe the implementation and operation of these algorithms,
and discuss how these vision chips may be applied to practical
problems of airborne visually-guided navigation.

1. INTRODUCTION

The motion processing algorithms evolved over the last few hun-
dred million years by biological organisms from insects to pri-
mates are quite different from those developed in modern com-
puter vision over the last few decades. Rather than using a value
code in which the motion of a local image region is represented
with a two-dimensional vector (optical flow), biological systems
use a place code in which the activation of one out of a set of spe-
cially tuned units encodes motion. Rather than making use of units
which are sensitive to the velocity of moving objects, biological
systems use motion units which are tuned in spatial and temporal
frequency.

One might naturally wonder if there are some advantages to
these truly ancient computational paradigms over conventional com-
puter vision algorithms, given the comparative success of biolog-
ical organisms in real environments. While this is an ongoing re-
search area, some relative advantages and disadvantages have be-
come clear. Using motion units that can be adaptively tuned to
targets or scene spectra of interest is clearly an advantage when
trying to measure the motion of a specific object while the imaging
platform is in motion. However, the accompanying disadvantage is
the need to implement multiple parallel motion units with different
tunings to avoid missing terrain features or unexpected obstacles.
Because this kind of parallelism becomes very computationally in-
tensive in a conventional discrete-time serial computing paradigm,
we have implemented these algorithms in VLSI vision chips.

2. VISION CHIPS

There are a number of well understood computational algorithms
which are used at an abstract mathematical level to model mo-
tion detection in biological organisms ([1, 2], but look also for
[3]). These algorithms fall in the class of motion energy methods
because they measure the spectral energy in a specified band of
spatial and temporal frequency.

We have chosen to implement a version of the Adelson-Bergen
algorithm [2] because it can be done quite compactly. Earlier ver-

sions of this implementation have been discussed in previous pub-
lications [4, 5], but the latest iteration has substantially revised
circuitry and improved signal-to-noise ratio. Our version of this
algorithm processes the inputs from two neighboring visual sam-
pling points through temporal filters, additions, subtractions and
nonlinearities to result in a local motion-sensitive signal.

These operations are completely implemented in analog VLSI
circuitry to maximize power- and space- efficiency. An image is
directly focused onto the silicon die. The visual front end is an
adaptive photoreceptor [6] which transduces local light intensity
into a voltage while adapting to the mean illumination, allowing
operation over several orders of magnitude of light intensity with-
out a change in voltage bias settings or lens iris opening. The high-
level schematic of the implementation is shown and described in
Figure 1. The final current output of this circuit represents the di-
rection of a moving visual stimulus; zero current means no motion,
positive current indicates leftward motion, and negative current in-
dicates rightward motion.

This VLSI visual motion circuit was layed out and fabricated
through the MOSIS service in a 1.5 �m process; chip layout is
shown in Figure 2. Thirteen copies of this motion cell are present
on the chip in a one-dimensional row. In order to achieve max-
imum signal-to-noise ratio, the current outputs of the entire row
of pixels were summed by exploiting Kirchoff’s current law; the
summed response to moving stimuli is shown in Figure 3.

3. EXPERIMENTS IN VISUAL STABILIZATION

Biomimetic VLSI vision chips are well matched to airborne plat-
forms due to their low power and weight requirements, and their
potential for high-speed response. We are interested in applying
these techniques to the problem of airborne visual navigation. A
degenerate portion of the full three-dimensional navigation prob-
lem is simply the visual stabilization of an airborne platform.1 To
evaluate our visual motion sensors, we have suspended part of an
airship system such that it can only move rotationally (only the
yaw angle is free to change), as shown in Figure 4. Using two
propellers to generate torque, the job of the electronics is to cancel
the rotation of the platform using visual information alone. The
two propellers always turn in opposite directions and their con-
trol signal is simply the summed outputs of the two vision chips
(i.e. proportional control). To facilitate experimentation of several
types, two vision chips have been mounted on the platform, both
looking slightly downward, with a relative angle of approximately
ninety degrees.

1A similar task has been demonstrated by Harrison and Koch [7] for a
terrestrial platform.
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Figure 1: High-level schematic of a circuit implementing a version of the Adelson-Bergen visual motion algorithm. Signal flow is from left to right,
starting with phototransduction by the adaptive photoreceptor which provides both an output voltage representing the local contrast (Vprout) and a second
signal representing the long-term average of local illumination (Vfb). The contrast signal is low-pass filtered in voltage mode using a five-transistor
transconductance amplifier (Vprfilt). These voltage signals are converted to differential currents using differential pairs. The rest of the algorithm involves
only sums, absolute values, and differences of currents. Signal currents in italics come from the neighboring pixel to the left. Addition of currents is
accomplished via Kirchoff’s current law, and subtraction by using a current mirror to reverse the direction of one of the two currents. The absolute value
block (ABS) is a three-transistor current-mode full-wave rectifier circuit. The total number of transistors in a pixel is 43.

(a) (b)

Figure 4: Photographs of experimental setup for visual stabilization of a suspended platform. (a) Airship “gondola” suspended from the ceiling with two
vision chips used to control the rotors. Each vision chip is underneath a lens which serves to focus an image of the world on it. (b) Closeup of electronics.
The analog output of the vision chips (at right) is fed into a microcontroller (near center) which converts these signals into pulse-width modulated digital
signals to control the airship servos. The sensory and control electronics is completely powered by a 9-volt battery.



Figure 2: Layout of visual motion chip in a 1.2 �m CMOS process. Total
size of the die is 2.1 � 2.1 mm2 . Four different motion algorithms (only
one of which is described here) are tested on this chip, with 13 copies of
each on four rows.

Each vision chip has a fairly narrow field of view due to the
8 mm focal length lenses used. The very low spatial resolution
of each motion sensor makes it possible for the motion chip to
respond only to fairly broad (medium spatial frequency) features
of the environment.

Our first experiment is one in which we demonstrate the lim-
itations of the vision system. We have handicapped the system in
three ways. Firstly, as the platform rotates on its tether, for a large
portion of its rotation the objects in the view of any single vision
chip have little or no features at spatial frequencies which allow
the chip to respond significantly (the chip is looking at a blank
wall and a uniformly-upholstered couch). Secondly, the torque
outputs are imbalanced. That is, a given negative control signal
will result in more negative torque than the corresponding positive
control signal, giving the whole system a bias towards spinning in
one direction. Thirdly, we have turned off one of the vision chips,
effectively “closing one eye”.

These three handicaps together result in the stabilization per-
formance shown in Figure 5(a). The platform stabilizes briefly at
an angle where the vision chip can see spatial frequency of inter-
est. However, the imbalanced control signals inevitably result in a
rotation to angles where no significant motion is seen, leading to a
rotation of the platform around to an angle where texture can again
be seen.

If we now enable both vision chips, eliminating only the third
handicap, the system has no trouble stabilizing itself as shown in
Figure 5(b). This is due to the fact that one of the two vision chips
is always getting a good indication of platform motion. However,
at some rotation angles the stabilization performance is less precise
than at other angles, as demonstrated in the inset panel in Figure
5(b).
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Figure 3: Summed response of a one-dimensional array of 13 motion sen-
sors to a moving sinusoidal grating stimulus. The chip output is actually
a current which is converted to a voltage outside the chip using a current
sense amplifier with a 1M
 feedback resistor. The response plotted is the
sense amplifier output voltage relative to the reference voltage. For the first
3 seconds, the stimulus is stationary and the chip responds only to fluores-
cent ambient illumination. The stimulus then moves left for approximately
4 seconds, and then changes direction to the right. For this stimulus, there
is an extremely strong distinction between leftward, nonmoving, and right-
ward stimuli.

4. AIRBORNE VISUAL NAVIGATION

Qualitatively similar yaw stabilization performance to that dis-
cussed in the suspended system above has been achieved in a free-
flying airship.

Experiments currently in progress investigate the ability of the
same system to avoid obstacles in flight. The biologically-inspired
algorithms are based on two sets of studies performed in insects.
The first set of studies [8] showed that honeybees in forward flight
match the global image velocity of the left and right eyes to steer
a centered path between relatively close walls on both sides. The
second set of studies [9, 10, 11] describes neurons in locusts and
moths which warn of an approaching collision with an object or
predator.

The first of these biological algorithms can be approximately
emulated in our system by controlling the yaw angle of the system
in forward flight to match the response of left and right motion
detectors. This will allow the system to avoid running into walls
and other extended objects. In addition, the second algorithm can
be crudely implemented by initiating a turn when one or the other
of the motion inputs exceeds a pre-set threshold.

5. FUTURE WORK

All of the rudimentary algorithms discussed above make use only
of the global sum of motion detectors. By making use of the spatial
resolution already present in the vision chips, better performance
could be obtained.

Models of the locust obstacle avoidance system [11] can be
closely emulated [12] by using motion detector outputs to estimate
the size and angular expansion velocity of an approaching object.
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Figure 5: Experimental results for visual stabilization of a suspended platform. (a) Narrow field of view: single vision chip operation. The angular axis is
scaled so that a value of unity indicates a 360 degree rotation. The platform stabilizes briefly, but then rotates back to the point where it can again see features
of interest. (b) Wide field of view: two vision chips operating (main panel is same scale as panel a). At approximately 6.2 seconds, the platform was moved
by hand to a different angle. Inset panel is a detail view, scaled in degrees. The system oscillates about a constant mean position; the oscillation is due both
to the imbalanced control signals and to the fact that the proportional control loop gain was simply unity. At the first position where the system stabilizes,
the amplitude of its oscillation about the mean is about 10 degrees. After the system has been manually repositioned, the oscillation amplitude is increased
to about 15 degrees due to the sparser visual scene being observed by the vision chips.

This would allow synthesis of a signal which peaks at a given time-
to-collision regardless of the particular object approaching.

The monocular “depth perception” models of Wicklein and
Strausfeld [10] offer a more sophisicated route to estimating the
relative danger of approaching objects and choosing an appropri-
ate course which remains feasible with a biomimetic VLSI imple-
mentation.
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