
Fuzzy Rule-Based Networks for Control

Charles M. Higgins and Rodney M. Goodman

Abstract| We present a method for the learning of fuzzy
logic membership functions and rules to approximate a nu-
merical function from a set of examples of the function's in-
dependent variables and the resulting function value. This
method uses a three-step approach to building a complete
function approximation system: �rst, learning the member-
ship functions and creating a cell-based rule representation;
second, simplifying the cell-based rules using an information-
theoretic approach for inductionof rules from discrete-valued
data; and �nally, constructing a computational (neural) net-
work to compute the function value given its independent
variables. This function approximation system is demon-
strated with a simple control example: learning the truck
and trailer backer-upper control system.

I. Introduction

The problem of approximating a function from a set of
examples can be solved in a multitude of ways, including
mathematicalmethods using an explicit model for the func-
tion to be learned and model-free systems such as neural
networks and fuzzy systems. The exibility and wide ap-
plicability of model-free systems has led to wide interest in
their use, particularly in learning control system functions.
The ability of fuzzy systems to express complex functions
in terms of linguistic rules makes such systems an attrac-
tive alternative to neural network `black boxes,' in which
the function learned can only be observed through the in-
put/output relationship.
While there are well known methods in existence for the

approximation of functions using neural networks (two of
the most successful are backpropagation [1] and radial ba-
sis functions [2]), methods for creating fuzzy systems from
data are less well developed. The approach of Kosko [3]
learns only the rules, requiring the membership functions
to be set up by hand. Lin [4] and, later, Horikawa [5]
and d'Alch�e-Buc [6] start with a �xed number of rules and
membership functions and perturb them by backpropaga-
tion until they �t the data. An a priori choice of the num-
ber of rules and membership functions is required by these
approaches. Similar to the approach of the radial basis
function network, Wang [7] learns to express a function in
terms of fuzzy basis functions. Since each basis function
has its own set of membership functions, the explanation
ability of the rule-based system is mostly forfeited. Sugeno
and Kang [8] present a method for `fuzzy structure identi�-
cation' which constructs (evenly-spaced) membership func-
tions and rules with a functional conclusion. While this

This work was supported in part by Paci�c Bell, and in part by DARPA
and ONR under grant no. N00014-92-J-1860.
The authors are with the Department of Electrical Engineering, 116-81,

California Institute of Technology, Pasadena, CA 91125.

1.0

0

Neg Sm Neg

Zero

Sm Pos Pos

M
em

be
rs

hi
p

V
al

ue

Variable Value
−5.0 −1.0 1.0 5.0

Fig. 1. Membership function example

method is a powerful function approximator, again the ex-
planation ability of this system is limited.
In this paper, we present a novel method for learning a

fuzzy system to approximate example data. The member-
ship functions and a minimal set of rules are constructed
automatically from the example data, and the �nal sys-
tem is expressed as a computational (neural) network for
e�cient parallel computation of the function value. This
method does not require the convergence of an iterative
energy search algorithm, as in backpropagation methods,
and retains the explanation ability of rule-based systems
by expressing the example data in terms of simple rules
and a single set of membership functions.
The proposed learning algorithm can be used to con-

struct a fuzzy control system from examples of an existing
control system's actions. This can be useful in converting
any existing controller into a fuzzy controller. The learned
controller shares the advantages of all fuzzy systems - it
can be easily modi�ed via the membership functions and
rules if the performance is unsatisfactory, and the behavior
of the controller can be explained directly in terms of fuzzy
rules.

II. Fuzzy Logic Framework

Fuzzy logic is still a developing �eld. There is still much
disagreement in the literature about the best way each
fuzzy primitive should be realized. In this section, we de-
scribe and justify the choices we have made to de�ne our
fuzzy system.

A. Membership Functions

Within the framework of `fuzzy logic' there is a consid-
erable leeway in the choice of membership function shape
and overlap. No clearly optimal choices exist; however,
the following assumptions make the learning process much
more well-posed. We will use piecewise linear membership
functions rather than Gaussian or other continuous func-

1

tions; such membership functions are simple to implement
and computationally e�cient. We will also specify that
membership functions are fully overlapping; that is, at any
given value of the variable the total membership sums to
one. See Figure 1 for an example of both properties. Given
these two properties of the membership functions, we need
only specify the positions of the peaks of the membership
functions to completely describe them. Another bene�t
of these choices for membership functions is that they al-
low the interpretation of the system as a simple interpola-
tion between points in the input space. If all rules had a
value for every input variable on their condition side then
each rule would specify the value of the output at a single
point in the input space, and the system would interpolate
smoothly between these points to determine the complete
output surface. Depending on the number of conditions of
a rule, it may also specify a line, a plane, or a hyperplane
in the input space.

B. Fuzzy Rules

We de�ne a fuzzy rule as if y then x, where y (the condi-
tion side) is a conjunction in which each clause speci�es an
input variable and one of the membership functions associ-
ated with it, and x (the conclusion side) speci�es an output
variable membership function. There may be at most one
clause for each input variable. Thus an example rule is

if input1=high and input2=low then output=medium

If a set of rules has a clause for every input variable on
the condition side of each rule, we call it a cell-based rule
set, because any combination of membership functions for
every input variable de�nes a cell in the input space.

C. Fuzzy Inference

There are three fuzzy primitives needed to do inference
with the membership functions and rules we have described
above. The �ring strength of each rule is calculated as a
Fuzzy AND of its conditions; the weight given to each out-
put membership function is calculated as a Fuzzy OR of

the �ring strengths of each rule which leads to that con-
clusion; and �nally, the crisp �nal output is calculated as a
defuzzi�cation of the weights for each output membership
function.

1) Fuzzy AND: We will de�ne Fuzzy AND as a product.
A product gives a smoother tradeo� between rules than
using the minimum, more common in the fuzzy literature.
Use of the minimum results in a sharp corner in the output
where the minimum stops following one input and begins
to follow the other. The smoother response of the product
is better for a simple interpolative function approximation
system; the lack of sharp edges is particularly good for a
smooth control response. However, the more inputs there
are, the less the product looks like a minimum; for a large
number of inputs, the product looks like a crisp AND. By
using this de�nition, we are implicitly assuming that the
number of inputs is relatively small.

2) Fuzzy OR: We will de�ne Fuzzy OR as a (normal-
ized) sum. A more common approach in the fuzzy liter-

ature is to use the maximum rule weight. However, sum-
ming the weights rather than taking the maximum results
in a smoother output surface. Again, this is better for a
function approximation system.

3) Defuzzi�cation: For defuzzi�cation, we will employ
the singleton method, proposed by Sugeno [9], which uti-
lizes only the weights wi for each output fuzzy set and the
peaks Pi of each fuzzy set membership function. The crisp
output is calculated as

O =

P
wiPiP
wi

:

Note that the shape of the output membership functions is
not used in output computation { only the peaks; thus the
output membership functions can be considered as `spikes,'
or fuzzy singletons. This method is computationally e�-
cient and allows a simple network implementation.

III. Learning a Fuzzy System from Example Data

There are three steps in our method for constructing a
fuzzy system: �rst, learn the membership functions and an
initial rule representation; second, simplify (compress) the
rules as much as possible using information theory; and
�nally, construct a computational network with the rules
and membership functions to calculate the function value
given the independent variables.
Hereafter, we will refer to the function value as the out-

put variable, and the independent variables of the function
as the input variables.

A. Learning the Membership Functions

Before learning, two parameters must be speci�ed. First,
the maximum allowable RMS error of the approximation
from the example data; second, the maximum number of
membership functions for each variable. The system will
not exceed this number of membership functions, but may
use fewer if the error is reduced su�ciently before the max-
imum number is reached. If the maximum allowable RMS
error is unknown, this parameter can be set to zero and all
of the allowed membership functions will be used.

1) The Successive Approximation Algorithm: The follow-
ing steps are performed to construct membership functions
and a set of cell-based rules to approximate the given data
set. Initially, there are no membership functions.
An example is provided in Figure 3 of learning the func-

tion in Figure 2.

1. Set up initial model.

(a) Add inputmembership functions at input extrema.

We add membership functions for each input variable at
its maximum and minimum in the data set. Figure 3(a)
shows the input membership functions representing the
input extrema in our example.

(b) Add output membership functions at the corner
points.

A `corner' of the input space is a point at which each of the
input variables is at its maximum or minimum value in
the data set. The closest example point to each corner is
found and a membership function for the output is added

2

at its value at the corner point. Figure 3(a) shows the
three membership functions obtained for the output by
looking at the corners of the example function.

(c) Create the initial rule set.

The initial cell-based rule set contains a rule for each cor-
ner, specifying the closest output membership function to
the actual value at that corner. Each rule e�ectively rep-
resents the point that was closest to that corner. Thus
we begin with a planar (hyper-planar) model of the sys-
tem. Note that this is not the best planar approximation
to the data, but merely the plane correct at the corners.
Figure 3(a) shows the initial planar approximation to the
example function.

2. Add membership functions at the point of maximum
error.
We compare the current model to the function to be learned and
�nd the example point with the maximum absolute error. We
then add a membership function for each variable at its value at
the point of maximum error. This allows us to completely spec-
ify the point, thus totally eliminating its error. (In this paper,
we assume that the input data is noiseless; if there is noise, a
more complex scheme for choosing this point may be necessary.)
Figures 3(b)-(e) show the membership functions added at the
point of maximumerror for four iterations, gradually improving
the approximation to the example function.

3. Construct a new cell-based rule set; update output
membership functions.
In this step, we construct a new set of rules to approximate
the function. Constructing rules simply means determining the
output membership function to associate with each cell. While
constructing this rule set, we will also add any output member-
ship functions which are lacking in the data; note that when
we add a single new membership function, we add a number
of rules to the cell-based set. The correct output value for any
point which was not explicitly added may not be among the
output membership functions.
The best rule for a given cell is found by �nding the closest
example point to the rule (recall each rule speci�es a point in the
input space). If the output value at this point is `too far'1 from
the closest output membership function value, this output value
is added as a new output membership. After this addition has
beenmade, if necessary, the closest outputmembership function
to the value at the closest point is used as the conclusion of the
rule.

4. If error threshold has been reached or all membership
functions are full, exit. Otherwise, go back to step 2.
By Figure 3(e), the RMS error of the model from the example
function is so small that the algorithm can terminate.

2) Control System Considerations: In a general function
approximation system, we are concerned with error in all
parts of the input space. However, if we are learning a
control system we are more concerned with precision in
the approximation near the `zero-error' or `goal' state. It
is acceptable if the approximation is less precise far away
from the goal state, as long as the control system is able
to get the plant near the goal state. Near the goal state,
we require more precision in order to have a satisfactory
result. This uneven requirement for precision is usually ex-
pressed by fuzzy control system designers by putting more
membership functions near the goal state. To allow for this
requirement, in �nding the point with the maximum error
in the algorithm given above we multiply the error calcu-
lated for each point by a weighting factor which is inversely
proportional to the distance from the goal state. This will
result in more membership functions near the goal state.
For the experimental results shown in this paper, we used a
function which decreases exponentially with distance from

1De�ned as a �xed percentage of the range of the output variable.

2

4

6

8

10

2

4

6

8

10

0

10

20

30

2

4

6

8

10

2

4

6

8

10

0

10

20

30

Fig. 2. Function to be learned

the goal state; the severity of this decrease is set high if the
function to be learned contains much complexity irrelevant
to the control problem (such as in the truck backer-upper
example in section IV) and is set low if most of the de-
tails of the example function are important. The following
function has been used successfully:

W (D;Dmax;M) = eD log(M)=Dmax

where D is the Euclidean distance from the goal state,
Dmax is the maximum distance from the goal state, and
M is the desired weight at the maximum distance.
As an additional measure to assure a precise response at

the goal state, we add membership functions before learn-
ing at the goal state in each variable. This assures that
the system will know exactly what to do at the goal state,
rather than bouncing back and forth between points on
either side.

B. Simplifying the Rules

In order to have as simple a fuzzy system as possible, we
would like to use the minimum possible number of rules.
The cell-based rule set resulting from the membership func-
tion learning step may contain many more rules than are
necessary to represent the data. These rules can be `com-
pressed' into a set of rules which are not cell-based { that
is, they may have less conditions then there are input vari-
ables. This compressed rule set will approximate the same
function as the original cell-based rule set.
We propose the use of an information-theoretic algo-

rithm for induction of rules from a discrete data set [10]
for this purpose. The key to the use of this method is the
interpretation of each of the original cell-based rules as an
example from a discrete example set. The cell-based rule
set becomes a discrete data set which is input to a rule-
learning algorithm. This algorithm learns the best rules to
describe the data set.
There are two components of the rule-learning scheme.

First, we need a way to tell which of two candidate rules is
the best. Second, we need a way to search the space of all
possible rules in order to �nd the best rules without simply
checking every rule in the search space.

3

2

4

6

8

10

2

4

6

8

10

0

10

20

30

2

4

6

8

10

2

4

6

8

10

0

10

20

0

input1

1.0 1.0

input2

1.0

200 35output

0 010 10
5 5

(a)

2

4

6

8

10

2

4

6

8

10

0

10

20

30

2

4

6

8

10

2

4

6

8

10

0

10

20

30 input1

1.0 1.0

input2

1.0

200 35output

0 05 10 5 10

(b)

2

4

6

8

10

2

4

6

8

10

0

10

20

30

2

4

6

8

10

2

4

6

8

10

0

10

20

30 input1

1.0 1.0

input2

1.0

200 35output

0 0 5 10105

(c)

2

4

6

8

10

2

4

6

8

10

0

10

20

30

2

4

6

8

10

2

4

6

8

10

0

10

20

30 input1

1.0 1.0

input2

1.0

200 35output

0 05 10 5 10

(d)

2

4

6

8

10

2

4

6

8

10

0

10

20

30

2

4

6

8

10

2

4

6

8

10

0

10

20

30 input1

1.0 1.0

input2

1.0

200 35output

0 05 10 5 10

(e)

Fig. 3. Successive approximations to target function

4

1) Ranking Rules: Smyth and Goodman[11] have devel-
oped an information-theoretic measure of rule value with
respect to a given discrete data set. This measure is known
as the j-measure; de�ning a rule as if y then X where y is a
conjunction of input variable values and X is a value of the
output variable, the j-measure can be expressed as follows:

j(Xjy) = p(Xjy) log2(
p(Xjy)

p(X)
) + p(�Xjy) log2(

p(�X jy)

p(�X)
)

The probabilities are computed from relative frequencies
counted in the given discrete data set. The j-measure is a
pure `goodness' measure, in that it values only the correct-
ness of the rule. [11] also suggests a modi�ed rule measure,
the J-measure:

J(Xjy) = p(y)j(Xjy)

This measure uses a multiplicative simplicity term to dis-
count rules which are not as useful in the data set in order
to remove the e�ects of `noise' or randomness. This has the
e�ect of bringing out the underlying pattern in the data.
The measures shown above have been developed for dis-

crete classi�er data sets. For the application of these mea-
sures to compression, we wish to vary the rule simplicity
term between that of the two measures. This allows us
to get more compression than the j-measure would allow,
but also ensure that we don't get so much error that our
approximated function becomes signi�cantly di�erent. We
thus propose the following rule `goodness' measure, which
allows a gradual variation of the amount of noise tolerance
(see Figure 4):

L(Xjy) = f (p(y); �) j(Xjy)

where

f(x; �) =
1� e��x

1� e��

The parameter � may be set at1 to obtain the j-measure,
since

lim
�!1

f(x; �) = 1 (x > 0)

or at 0+ to obtain the J-measure, since

lim
�!0

f(x; �) = x

Any value of � between 0 and1 will result in an amount
of compression between that of the J-measure and the j-
measure; thus if we are able to tolerate some error in the
prediction of the original rule set, we can obtain more com-
pression than the j-measure could give us, but not as much
as the J-measure would require. Consider the example
shown in Figure 5. This �gure shows that as we vary the
parameter � in the L-measure from large (the j-measure)
to small (the J-measure), the error in predicting the orig-
inal rule set (treated as a discrete data set) holds at near
zero for some time before increasing. By the time the error
has reached 5%, more than 30% compression of the original
rules has been obtained. The J-measure goes too far, caus-
ing an intolerable 15% error in prediction of the original
rule set.

X

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00

=0.50

=2.00

=5.00

=10.00

=20.00

=100.00

f(
x,

)

Fig. 4. Graph of f(x; �) for di�erent �'s

 Percent compression
 Percent rule error

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00300.00 200.00 100.00

Alpha

 J−measure

 j−measure

Fig. 5. Compression vs. error in rule prediction

2) Searching for the Best Rules: Given a way to numer-
ically rank rules, we need a way to search the space of all
possible rules in such a way as to select the best rules with-
out covering the entire space, whose size is exponential in
the number of input variables. Several search algorithms
have been proposed, including a constrained search of all
the possible rules (ITRULE,[12]). The following search al-
gorithm [10] searches a smaller subset of the space than
previous algorithms by using the examples directly as tem-
plates for rules.
Given a training set of discrete examples, an obvious way

to predict the output for a novel combination of inputs is
to retain all the examples and match an incoming example
to an example in storage. This is equivalent to regarding
the examples as very speci�c rules. However, these rules

5

1

2

3
med

high
input2 low

input1 high low

Lateral inhibitory connections

Input
Membership
Functions

Rules Output
Membership
Functions

Defuzzification

Fig. 6. Computational network constructed from fuzzy system

will not match any example not explicitly contained in the
training set. Consider now if we could decide which input
variables in each example to remove in order to generalize
the examples to rules which cover more of the original ex-
amples; the information measures discussed above provide
just such a way.
The algorithm for rule generation is as follows. Create

an initial rule from each example. If there are N input
variables, each initial rule is of order (number of conditions)
N . To develop the best rule from this example, do the
following:

1. Calculate the goodness measure for the rule. Call this
rule the parent rule.

2. For each of the child rules generated by removing a
single input variable condition from the parent rule,
calculate the goodness measure (If the parent rule was
order K, each of the K child rules is order K � 1).

3. Choose the rule among the parent rule and the set of
child rules with the greatest goodness measure. Spe-
cial cases:

(a) If two rules have the same goodness measure,
choose the one with the lower order.

(b) If two rules of the same order have the same good-
ness measure, choose a random one.

4. If the chosen rule is not the parent rule, the chosen
rule becomes a new parent rule; repeat the process
starting at step 1. If the chosen rule is the parent
rule, terminate.

Some examples will, of course, reduce to the same rule.
Thus, when the algorithm terminates, duplicate rules are
removed to produce the �nal rule set.

C. Constructing a Network

Constructing a computational network to represent a
given fuzzy system can be accomplished as shown in Figure
6. From input to output, layers represent input member-
ship functions, rules, output membership functions, and
�nally defuzzi�cation. A novel feature of our network is
the lateral links shown in Figure 6 between the outputs of
various rules. These links allow inference with dependent
rules. Each layer is described in detail below.

1) The Input Membership Layer: This layer merely im-
plements the input membership functions by generating a
value between zero and one given a numerical input. A con-
nection is made into each node in this layer from the input
variable for which it represents a membership function.

2) The Rule Layer: This layer contains a node for each
rule, receiving inputs from the appropriate input layer mem-
bership functions, and connecting to exactly one output
membership function node. Each node performs a product
of its inputs.
The links between the rule layer and the layers before

and after it have unit weight.

3) The Output Membership Layer: Each node in this
layer takes inputs from all rules that conclude this output
membership function and outputs the sum of the weights
for that output fuzzy set.

4) The Defuzzi�cation Layer: This layer performs a de-
fuzzi�cation by normalizing the weights from each output
membership function and performing a convex combina-
tion with the peaks of the output membership functions.
This implements the singleton method previously de�ned.

5) Lateral Inhibitory Connections: These connections are
used to solve a problem with the standard fuzzy inference
techniques when used with dependent rules. Consider the
example rule set below, as represented in network form in
Figure 6:

1. output = low

2. IF input1 = low THEN output = high

3. IF input1 = low AND input2 = low THEN output = med

Each of the rules is correct independently. It is only in
combination that they conict. If we use standard fuzzy
techniques to compute the output, rule 1 will add its con-
tribution to rules 2 and 3 to drive the output lower than it
should be even though we know that along the input1=low
axis, the output should be high. Similarly, rule 2 will pull
the output higher than it should be at the input1=low and
input2=low corner. We know speci�cally what the value
at this corner should be, and the interference of the other
rules is unsatisfactory.
What the ideal inference technique would do is the fol-

lowing: in the corner input1=low and input2=low, we know
from rule 3 that the output should be medium. We are not
interested in the contribution of the other two rules. Simi-
larly, if we are along the input1=low axis (but not too near
input2=low), we wish the output to be high because of rule
2. If we are not too near the input1=low axis, only rule
1 applies and the output should be low. We also wish a
smooth tradeo� between these regions, in keeping with the
basic principles of fuzzy logic.
What we really want is that a more general rule depen-

dent on a more speci�c rule should only be allowed to �re
to the degree that the more speci�c rule is not �ring. Thus
the degree of �ring of rule 3 should gate the maximum �r-
ing allowed for rule 2. Both rules should have a similar
e�ect on rule 1. Let the degree of �ring of rule i be called
fi, and the input to the output membership functions layer
be called oi. Then we can express this relationship as

o1 = f1(1� f3)(1� f2)

o2 = f2(1� f3)

6

o3 = f3

Thus at the corner speci�ed by rule 3, it alone is allowed
to �re, while rules 1 and 2 are completely shut o�. This
is expressed in network form in the links between the rule
layer and the output membership functions layer. The lat-
eral arrows are inhibitory connections which take the value
at their input, invert it (subtract it from one), and multi-
ply it by the value at their output. More generally, each
rule has an lateral inhibitory link coming to it from every
higher-order rule which contains all of its conditions.

IV. Experimental Results

In this section, we demonstrate our function approxima-
tion system by converting a hand-crafted neural controller
for the truck backer-upper problem (Figure 7) into a fuzzy
one.

Loading
DockTruck and Trailer

Cab
Angle

Truck
Angle

x,y

θc
θt

θ
Steer
Angle

s Position of
truck rear

Fig. 7. The truck and trailer backer-upper problem

Cab
Angle

Truck
Angle

−0.09

3.6

0.5

−0.6 5.4

Y
position

90.0 Steer
Angle

tanh

tanh

tanh

Fig. 8. The Jenkins-Yuhas Network

Jenkins and Yuhas [13] have developed by hand a very
e�cient neural network for solving the problem of backing
up a truck and trailer to a loading dock (Figure 8). Its tra-
jectory is comparable to that of other truck backer-upper
systems. We have chosen this system as a function to ap-
proximate because it is highly nonlinear and di�cult to
represent in terms of fuzzy rules. The equations of motion
used for the truck are shown below:

_x = B cos(�s) cos(�c) cos(�t)
_y = B cos(�s) cos(�c) sin(�t)
_�t = �B=Lt cos(�s) sin(�c)
_�c = � _�t + B=Lc sin(�s)

where

� B = 0:2m/timestep is the backing velocity of the trailer

� Lt = 14:0m is the length of the trailer
� Lc = 6:0m is the length of the cab and tongue
� x and y are the coordinates of the center of the back
of the trailer

� �c is the cab angle
� �t is the truck angle
� �s is the steering angle (output of the controller)

The truck moves in a �eld of size 80m by 80m.

 Fuzzy System

R
M

S
 e

rr
or

Number of truck angle membership functions

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

3 4 5 6 7 8 9

 Compressed
 Cell−based

 Jenkins−Yuhas System

Fig. 9. Error in �nal y position of truck backer-upper

The function approximation system was trained on 245
example runs of the Jenkins-Yuhas controller, with initial
states distributed symmetrically about the goal state. At
each simulation timestep, the truck state variables and the
resulting control output were recorded. The concatenation
of this data from all 245 runs was the input to the function
approximator. In order to show the e�ect of varying the
number of membership functions, we have �xed the max-
imum number of membership functions for the y position
and cab angle at 5 and set the maximum allowable error
to zero, thus guaranteeing that the system will �ll out all
of the allowed membership functions. We varied the max-
imum number of truck angle membership functions from 3
to 9. The e�ects of this are shown in Figure 9. Note that
the error decreases sharply and then holds constant, reach-
ing its minimum at 5 membership functions. The Jenkins-
Yuhas network performance is shown as a horizontal line.
At its best, the fuzzy system performs slightly better than
the system it is approximating.
For this experiment, we set a goal of 33% rule com-

pression. We manually varied the parameter � in the L-
measure for each rule set to get the desired compression.
Note in Figure 9 the performance of the system with com-
pressed rules. The performance is in every case almost
identical to that of the original cell-based rule sets. This
validates the e�ectiveness of our rule compression and de-
pendent rule inference schemes. The number of rules and

7

the amount of rule compression obtained can be seen in
Table 1.

Number of truck angle membership functions
3 4 5 6 7 8 9

Cell-Based 75 100 125 150 175 200 225
Compressed 48 67 86 100 114 138 154
Compression 36% 33% 31% 33% 35% 31% 32%

Table 1. Number of rules and compression for learned TBU systems

(a) Jenkins-Yuhas hand-crafted neural system

(b) Learned fuzzy system

Fig. 10. Demonstration of mode-based behavior of fuzzy system

One thing we have not quanti�ed in this example is the
smoothness of the truck trajectory (see Figure 10). While
the learned fuzzy system with 5 truck angle membership
functions actually performs better in RMS docking error
than the original Jenkins-Yuhas network, its path is not
as smooth. The fuzzy truck backer-upper has `modes' of
operation: the truck will �rst turn around, then back up
in a straight line at a diagonal angle, then change direc-
tion sharply and back towards the loading dock. This is
directly related to the piecewise approximation to the origi-
nal function. This piecewise approximation is also inciden-
tally responsible for the slightly improved performance |
while the Jenkins-Yuhas network approaches the loading
dock asymptotically, the fuzzy system turns sharply to line
up with it.

V. Summary and Discussion

We have presented a method which, given examples of
a function and its independent variables, can construct a
computational network based on fuzzy logic to predict the
function given the independent variables. The user must

only specify the maximum number of membership func-
tions for each variable and/or the maximum RMS error
from the example data.
There are three innovative aspects of this system, each

of which is valuable independently:

� Membership functions are generated automatically.

Membership functions are most often generated by
hand. This scheme allows the membership functions
to be chosen based only upon an error criterion by an
algorithm which must terminate in a small number of
steps.

� Cell-based rules are compressed into a minimal rule

set.

Many systems exist using cell-based rule sets. The
ability to compress such rule sets and retain the same
performance will lead to moremanageable, understand-
able rule sets.

� The problem of inference with dependent rules is solved.

When a system designer sets up a fuzzy system, he
may well want to use dependent rules. The proposed
inference scheme allows the rule system to perform as
he would expect it to.

We have applied our function approximation system to
the conversion of any existing controller into a fuzzy con-
troller. This application begs the question \What use is
this when there exists no working controller?" In our ongo-
ing research, we are using reinforcement learning to adapt
a table-based controller to a performance criterion. We
then extract a fuzzy controller from the learned table-based
controller using the techniques described in this paper, for
simplicity of representation and explanation ability. This
combination of reinforcement learning and fuzzy function
approximation will allow a fuzzy controller to be synthe-
sized for a completely unknown plant. We expect to report
on this in the very near future.

References

[1] D. Rumelhart, G. Hinton, and R. Williams, \Learning internal
representations by error propagation," in Parallel Distributed

Processing (D. Rumelhart and J. McClelland, eds.), ch. 8, Cam-
bridge, MA: MIT Press, 1986.

[2] T. Poggio and F. Girosi, \Networks for approximation and
learning," Proceedings of the IEEE, vol. 78, September 1990.

[3] B. Kosko, Neural Networks and Fuzzy Systems. Englewood
Cli�s, NJ: Prentice Hall, 1992.

[4] C. Lin and C. Lee, \Neural-network-based fuzzy logic con-
trol and decision system," IEEE Transactions on Computers,
vol. 40, pp. 1320{36, December 1991.

[5] S. Horikawa, T. Furuhashi, and Y. Uchikawa, \On fuzzy model-
ing using fuzzy neural networks with the back-propagation algo-
rithm," IEEE Transactions on Neural Networks, vol. 3, pp. 801{
6, September 1992.

[6] F. d'Alch�e Buc, V. Andr�es, and J. Nadal, \Learning fuzzy con-
trol rules with a fuzzy neural network," Proceedings of the In-

ternational Conference on Arti�cial Neural Networks, 1992.
[7] L. Wang and J. Mendel, \Fuzzy basis functions, universal

approximation, and orthogonal least-squares learning," IEEE

Transactions on Neural Networks, vol. 3, September 1992.
[8] M. Sugeno and G. Kang, \Structure identi�cation of fuzzy

model," Fuzzy Sets and Systems, vol. 28, pp. 15{33, 1988.
[9] M. Sugeno, \Fuzzy control: Principles, practice and per-

spectives," IEEE International Conference on Fuzzy Systems,
March 1992.

8

[10] C. Higgins and R. Goodman, \Incremental learning using rule-
based neural networks," Proceedings of the International Joint

Conference on Neural Networks, vol. 1, pp. 875{880, July 1991.
[11] R. Goodman and P. Smyth, \Information-theoretic rule induc-

tion," Proceedings of the European Conference on Arti�cal In-

telligence, Munich, Germany,.
[12] R. Goodman, C. Higgins, J. Miller, and P. Smyth, \Rule-based

networks for classi�cation and probability estimation," Neural
Computation, vol. 4, November 1992.

[13] R. Jenkins and B. Yuhas, \A simpli�ed neural-network solution
through problem decomposition: The case of the truck backer-
upper," Neural Computation, vol. 4, September 1992.

9

