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ABSTRACT

Tracking of a target in a cluttered environment requires extensive
computational architecture. However, even a small housefly is
adept at pursuing its prey. Biomimetic algorithms suggest a novel
way of looking at this problem. In the lobula plate of a fly’s brain,
a neural circuit is hypothesized based on a tangential cell called
the figure detection (FD) cell. The proposed small target fixation
algorithm based on electrophysiological recordings does not take
into account the translation of the pursuer during pursuit. We have
modified the biological algorithm to include this aspect of track-
ing. In this paper, we present the elaborated biological algorithm
for small target tracking, and an analog VLSI implementation of
this algorithm.

1. INTRODUCTION

Target tracking in a cluttered environment from a moving platform
is a computationally intensive task. Digital tracking systems that
use pattern matching between successive frames are commonly
used. However, the speed and computational power requirements
for these systems are very high. An alternative solution lies in the
implementation of biomimetic algorithms for target fixation and
pursuit. Insect visual systems exhibit efficient tracking and pursuit
behavior on a daily basis, whether it is for tracking of prey or a
male’s pursuit of a female of the same species [1]. This motivates
us to understand the underlying neural algorithm that a fly utilizes
for target detection and pursuit.

The problem of target tracking involves detection of a moving
object. This sub-problem of finding the direction of motion has
been studied and modeled extensively. A common type of such
an elementary motion detector (EMD) is one based on asymmet-
ric filtering of two adjacent sampling units, taking their product
and then performing a time averaging operation on this output.
This is known as a Hassenstein-Reichardt (HR) detector [2]. The
discrimination of a small object from its background can then be
done based on the optical flow-fields characterized by the direc-
tion of motion. One such algorithm was proposed by Reichardt et
al [3], in which a direction selective output from the visual field
was utilized to identify discontinuities in the optical flow-fields. It
is believed that two functional classes of output elements of the vi-
sual ganglia are involved in object-background discrimination by
relative motion in the fly: horizontal cells that respond to large
textured patterns [4] and figure detection (FD) cells which are sen-
sitive to small moving objects [5, 6] (see Figure 1). A postulated
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Fig. 1. Spatial integration properties of neural elements. (a) The
position of the HS cell and the FD cell in the fly lobula plate. (b)
Dependence of the mean response amplitude of a HS cell and a FD
cell on the size of the stimulus pattern. The response of HS cell
reaches its maximum for motion of large patterns, whereas the FD
cell response is strongest for small moving patterns. Reproduced
without permission from Egelhaaf and Borst [8].

neural circuit model based on the FD cells has been described by
Reichardt, Egelhaaf and Guo [7]. This FD algorithm models the
optomotor response (torque) generated by the fly while fixating on
a target. Pursuit of a target involves identification of the target from
its background, and the ability to keep the target in the view-field
of the detector. This involves rotatory motion along with transla-
tion in the direction of the target. The FD algorithm can be used to
discriminate a small object from its background. However, it does
not take into account the complexity of the visual field when there
is a simultaneous translation along with yaw maneuvering. We
have modified the biological algorithm such that it also takes into
account the translational motion of the pursuer towards the target
while chasing. In this paper, we present a brief overview of this
algorithm, and a description of the VLSI implementation of a tar-
get tracking FD sensor. The emulation of such a system has shown
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the effectiveness of this algorithm in cluttered environments and
results of the same are presented.

2. ALGORITHM

The biological algorithm implemented in this paper is based on
spatiotemporal filtering of visual information. The visual input is
sampled at several space coordinates by photoreceptors. This input
when correlated with the visual input from an adjacent photorecep-
tor gives the directional motion output. A HR type detector is used
here for determining the direction of motion. Each of the individ-
ual EMD’s response can either be positive (preferred direction of
motion) or negative (null direction). The output from this stage is
split into two channels, positive v+

i and negative v−
i respectively

(v+
i > 0 and v−

i > 0). It is then summed by two pooling units
each on the left and right side of the visual field. A P+ pool cell
is activated by front-to-back motion, and a P− pool cell by back-
to-front motion. For N EMDs on the right side of the visual field,
the pool cells perform the following operation:

P+
r =

NX

i

v+
r (i) (1)

P−
r =

NX

i

v−
r (i) (2)

Similarly, P+
l and P−

l sum the motion components on the left side
of the visual field.

During pursuit, the translatory motion of the fly (robot) is cou-
pled with the rotatory motion required to keep the target in the
center of the view field. In our algorithm, we have accounted for
this by combining the response from the pool-cells on both sides
of the visual field.

1. When the angular velocity of the robot is smaller than a
threshold value, the motion is approximated by a pure trans-
latory motion. This is given as:

P f
r (t) = P+

r (t) + P+
l (t) (3)

P r
r (t) = P−

r (t) + P−
l (t) (4)

where P f
r is the motion expected during forward transla-

tion, and P r
r for translation in opposite direction.

2. When the angular velocity exceeds the threshold, the mo-
tion is approximated by a purely rotatory motion. This is
given as:

P f
r (t) = P+

r (t) + P−
l (t) (5)

P r
r (t) = P−

r (t) + P+
l (t) (6)

where P f
r is the motion expected during clockwise rotation,

and P r
r for rotation in opposite direction.

Consider a scenario where the object is moving along the pre-
ferred direction of the array of EMDs, and the background is static.
As the fly (robot) moves its gaze towards the object (target), it sees
an apparent motion of the background in the null direction. Thus,
a few EMDs looking at the object give a positive output, while
all the remaining looking at the background give a negative re-
sponse. By separation of the two channels we achieve the first
level of distinction between the object and the background. Next,
the response from individual pixels is normalized over the entire
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Fig. 2. Basic building blocks in a processing element (pixel) of
the FD sensor. The direction of motion is computed using the HR
detector shown in the box. The directional output from the HR
sensor is split using a full wave rectifier circuit. This output is
normalized and squared to produce a response, proportional to the
torque response generated for a corresponding small object.

response pertaining to that channel, i.e. the positive response from
a pixel is normalized by the entire positive response from all the
photoreceptors, and the negative by the total negative response. In
our case, we have a few pixels looking at a small target, and we
get an average response by this normalization for the target. At
the same time, the weak response from the background detected
by rest of the sensors gets divided by a large number of otherwise
idle sensors, given as:

y+
i =

v+
i

P f
r

(7)

y−
i =

v−
i

P r
r

(8)

A non-linear expansion after normalization further suppresses the
background response, and at the same time enhances the response
due to a small target. This response is summed over the entire
left/right visual field, such that for the right “eye”, the output is:

Rr(t) =

NX

i=1

abs
ą
[y+

i ]n − [|y−
i |]n ć

(9)

The exponent n is used to enhance the target response and sup-
press the background response. In our algorithm, n is a magnitude
squaring factor (n = 2). The final torque output is the difference
between the right and left eye, and is given as:

O(t) = Rr(t) − Rl(t) (10)

3. VLSI IMPLEMENTATION

The building blocks identified in the previous section are replaced
by their circuit equivalents to design a basic “pixel” (see Figure 2).
This pixel computes the response over a small portion of the visual
field. The output of several such pixels is used to compute the net
global tracking response. The sub-circuits used in this architecture
can be broadly put under two circuit blocks presented below.

3.1. HR detector

This circuit block consists of an adaptive photoreceptor, a lowpass
filter, a multiplication stage, and finally a subtractor circuit. This
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Fig. 3. Part of the pixel circuit for tracking computation. The
full-wave rectification, positive and negative normalization, and
squaring circuit stages are shown.

HR EMD has been implemented as a modified version of Harri-
son’s implementation of the HR detector [9].

The input stage is a modified version of Delbrück’s adaptive
photoreceptor [10]. This photoreceptor can operate over a range
of five orders of magnitude of light intensity, and has an output
proportional to the logarithmic of its photoinduced current. This
circuit has a bandpass characteristic, so it does not require an ex-
plicit highpass filter as in Harrison’s implementation. In our im-
plementation we have used two outputs from this stage: a transient
output Vprout and a long-time mean response Vfb. The photore-
ceptor output is then filtered by a lowpass filtering (LPF) stage.
This is a standard gm − C filter implemented using P-type MOS-
FETs. The P-type filter stage allows the photoreceptor output to
be in a wider common-mode voltage range. The HR detector is a
correlation-based model and to achieve this correlation, a delayed
and a non-delayed signal from the photoreceptor are multiplied.
The lowpass filtered output Vprfilt acts like a delayed response
from the photoreceptor. We have used a Gilbert multiplier circuit
[11] to perform the multiplication. Again, a P-type implemen-
tation has been used to operate the circuit in its maximum input
signal range. This circuit removes the mean response Vfb from
Vprout and Vprfilt signals to get rid of the DC offset. The out-
put from this multiplication stage is a current Imul representing
response of one half of the HR detector:

Imul = Ib ·
ţ

Vprout − Vfb

2 · VT

ű
·

ţ
Vprfilt − Vfb

2 · VT

ű
(11)

where Ib is a bias current, and VT is the thermal voltage. Figure 2
shows that a single pixel has two such sub-circuits to perform the
complete motion algorithm. The output of these two mirror sym-
metric circuits is subtracted using a current mirror to get a motion
output.

3.2. FD circuit

The second stage of this sensor is detection of the small target from
its background and generating an output proportional to the torque
response for steering the robot. Figure 3 shows the transistor level
circuit used to implement this stage. A full-wave rectifier splits the
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Fig. 4. Chip Architecture of the FD sensor chip. Arrays of FD
pixels are juxtaposed, and interact to generate a tracking response.
Vertical and horizontal scanner circuits are used to investigate in-
dividual pixel response for target localization. A normalization
circuit common to the entire chip scales the current output from
each pixel, as well as the interaction with another sensor acting as
the second “eye”.

directional current output from the HR detector stage into positive
and negative halves. Here, it should be noted that at any given
instant, the output from a motion detector is either positive or neg-
ative, but never both. So, this rectification can be viewed as a
routing mechanism for the current to its corresponding normaliza-
tion circuit. A Gilbert normalizer circuit [12] is used to implement
both positive and negative normalization. Each pixel acts as one
of the n channels of the normalizer, and an external normalization
circuit has the bias controls for the normalizer. The FD algorithm
described in section 2 has two identical “eyes” that interact with
each other during normalization. In our implementation we have
utilized a channel, in both the normalizers, that receives its input
from an external chip corresponding to the positive and negative
half of the total HR detector response, summed over the entire
chip. In addition, we have used another channel in the normalizer
to take care of the condition when none of the channels are active
(current through them is zero). This channel is controlled by an
external bias to introduce a very small current such that the output
current is the maximum through this channel in case of no activ-
ity. Translinear analysis of the normalizer circuit gives an output
current for a positive channel of the form:

I+
norm(i) = Ibias · I+

r (i)

Iβ +
Pn

j=1 I+
r (j) + I−

left

(12)

where Ibias is the total bias current of the normalizer, I+
r (i) is

the positive half of the HR detector output in ith channel, I−
left is

the total negative current response of the HR detectors from the
contralateral chip, and Iβ is the small current to take into account
the case of no activity.

As discussed, only one of the normalizer circuits is active at
any given instant of time, so that the order of nonlinear expansion
and subtraction of the two channels as shown in equation 9 can be
reversed without changing the characteristics of the response. A
squaring circuit nonlinearly expands the output from the normal-
ization circuit. This current mode squaring circuit [13] gives an
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Fig. 5. System emulation with HR and FD sensors. Tracking can
be done using a less sophisticated sensor like the HR detector only
for less cluttered environment. However, the FD sensor is effective
even in highly cluttered scenarios. The minimum distance between
the robot and the target when the robot is moving without any vi-
sual inputs is also shown.

output current that is proportional to the torque response due to
the small moving target, and by applying translinear analysis can
be shown to be of the form:

Iout =
(Inorm)2

Isq
(13)

where Isq is a bias current controlled by an external bias Vsq . The
complete architectural layout of the FD sensor chip is shown in
Figure 4.

4. RESULTS

The FD sensor chip has been fabricated through MOSIS in a stan-
dard 1.6 µm CMOS process. The resolution of this sensor is 13×6
pixels on a 2.2 mm × 2.2 mm die. We have performed a system
level emulation of this circuit, and used the output response to con-
trol the trajectory of a simulated robot as it chases a target. The
effectiveness of this algorithm over a less sophisticated algorithm
based on only direction of motion (the HR detector) is shown in
Figure 5. Two identical robots were controlled by two different
sensors, the HR sensor and the FD sensor. In the system emu-
lation, the arena was a 2-D plane 300 × 300 space-units in size
that was bounded by four walls with 20 fixed objects on each wall,
with a moving target. The contrast of the fixed objects varied with
distance as:

Ci = min

ţ
1.0,

KD

Di

ű
(14)

where Di is the distance of an object from the robot, and KD is the
distance within which the contrast is true (not scaled). The robot
with the HR detector circuit was not able to track a target when the
contrast scaling distance KD was increased, i.e. the background
became more cluttered. The robot moved in the simulated arena
as if there was no visual input. Under similar conditions, the robot
equipped with FD sensor circuitry was able to detect and track the
target, even for bright background objects. This ability of the FD

sensor motivates its potential of tracking a target in complex real
world scenarios.

This biomimetic algorithm, therefore, presents a simple but
robust model for tracking in cluttered scenarios. The implementa-
tion of the entire circuit has been done in the subthreshold region
of MOSFET operation. This reduces the power dissipation of the
entire chip. This architecture can be used to detect the direction
of motion via the HR detector output, or to track a target utiliz-
ing the FD sensor, or to localize the target by inspecting individual
pixel responses. Thus, this aVLSI architecture has all the requi-
site mechanisms on board for tracking in real world scenarios, as
predicted by the system level emulations.
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