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Abstract—Visual motion information provides a variety of
clues that enable biological organisms from insects to primates
to efficiently navigate in unstructured environments. We present
modular mixed-signal very large-scale integration (VLSI) imple-
mentations of the three most prominent biological models of visual
motion detection. A novel feature of these designs is the use of
spike integration circuitry to implement the necessary temporal
filtering. We show how such modular VLSI building blocks make
it possible to build highly powerful and flexible vision systems.
These three biomimetic motion algorithms are fully character-
ized and compared in performance. The visual motion detection
models are each implemented on separate VLSI chips, but utilize
a common silicon retina chip to transmit changes in contrast,
and thus four separate mixed-signal VLSI designs are described.
Characterization results of these sensors show that each has a
saturating response to contrast to moving stimuli, and that the
direction of motion of a sinusoidal grating can be detected down to
less than 5% contrast, and over more than an order of magnitude
in velocity, while retaining modest power consumption.

Index Terms—Address-Event Representation (AER), analog
very large-scale integration (VLSI), biomimetic, modular, neuro-
morphic, visual motion.

I. INTRODUCTION

THE REAL-TIME processing of visual motion is very
compute-intensive and is limited in small autonomous

robots and embedded systems by issues of size, weight, and
electrical power consumption. Conventional design approaches
to image processing that employ a charge-coupled device
(CCD) camera delivering high-speed frames of visual informa-
tion together with a serial discrete-time digital signal processor
are not architecturally well matched to, and thus not efficient
for, visual motion processing which can be computed in parallel
using nearest neighbor communication only.

A direct implementation of visual motion processing algo-
rithms using analog pixel-parallel computation with nearest
neighbor communication can efficiently compute motion in
real time, and this has been an active area of research for nearly
two decades [1]–[15]. Biologically inspired algorithms which
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compute the spatio-temporal frequency (STF) content in each
local patch of the image have significant advantages over op-
tical-flow based representations. Since each sensor only detects
the STF content of the signal, multiple motions (distinguished
in spatial or temporal frequency) can be represented in a single
local image region by using a bank of such sensors with dif-
ferent spatial and temporal frequency tunings. Additionally, the
lack of a digital threshold at any point in the algorithm means
that detection of motion at low contrast or low speed requires
only a sufficient temporal integration time to average out noise.
These issues are discussed at greater length in a related paper
[16] in which the same three STF-based algorithms utilized in
this paper are described in monolithic analog very large-scale
integration (VLSI) implementations.

Monolithic focal plane motion sensors have the advantage
over multichip approaches that the image data is transduced and
processed in the focal plane and need not be communicated to
a separate processor. One drawback of this approach is that,
the more complex the motion computation becomes, the lower
the fill factor (the percentage of pixel area dedicated to photo-
transduction) becomes [17]. In order to prevent the fill factor
from becoming unacceptably small, we can partition the mo-
tion computation into two tightly coupled custom VLSI chips.
However, in order for the motion computation to be partitioned
without dramatically increasing power consumption, it is es-
sential that the stream of information flowing from the photo-
transduction stage be reduced over that from a CCD imager. We
accomplish this by having the chip incorporating phototrans-
duction (termed the sender chip) only transmit changes in local
luminance. The two-dimensional (2-D) spatial position of these
changes is transmitted over an asynchronous digital bus [18] to
achieve low average power consumption. A motion processor
(the receiver chip) uses this luminance change information to
compute a 2-D array of local motion information. Fig. 1 out-
lines some of the possibilities for complex motion computations
with these two chips; see [17] for details and characterizations
of previous generations of such systems. Note that the computa-
tion in this system is data driven, since nothing happens until the
image changes. For the same reason, power consumption in this
system depends on the amount of change in the visual image.
For an unchanging image, very little power, attributable to bias
currents and static leakage in digital circuits, is consumed. A
second major challenge of this partition, which arises from the
use of a digital bus to communicate between chips, is to avoid
corrupting the low signal level analog signals used in the motion
computation with noise from the digital portions of both chips.

In this work, we show that it is possible to efficiently split
an STF-based motion computation into two modules without
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Fig. 1. A few of the many powerful vision system configurations using modular motion processing chips. Sender indicates a photosensitive sender chip with x

and y address outputs shown. Receiver indicates a motion processing receiver with x and y address inputs shown. Address remapper indicates a static address
remapping function. For simplicity, bus synchronization circuitry is not shown. (a) A single sender and receiver implement a 2-D array of one-dimensional
(left-right) motion sensors with an output comparable to a monolithic implementation. However, the fill factor in this case is improved over a monolithic
implementation. (b) Address remapping is performed between the sender and receiver chip. This might be, for example, a polar coordinate address remapping
such that motion along the vertical axis of the receiver now corresponds to expansion in the visual image, and horizontal motion to rotation. In the same
configuration, motion could be computed at a spatial frequency tuning lower than in panel a by mapping alternate rows and columns of the sender chip onto the
receiver. (c) Outputs from two sender chips with convergent fields of view are interlaced onto the columns of a single receiver chip. Because the motion algorithm
on the receiver chip expects the columns to be activated in sequence, this gives rise to a motion system with a preferred optical disparity. This system will respond
to motion only at the depth at which the image is the same on both sender chips. (d) One sender coupled with two receivers can be used to compute two 2-D
arrays of motion sensors. For example, the top receiver chip may compute the same motion outputs as in panel a (left-right). The bottom receiver chip receives
exchanged x and y address buses, and thus computes a 90 rotated (up-down) and mirrored set of motion outputs. Similarly, using two receiver chips, motion
could be simultaneously calculated at two different temporal frequency tunings.

Fig. 2. Visual motion algorithms. (a) Adelson–Bergen (AB). (b) Barlow–Levick (BL). (c) Hassenstein–Reichardt (HR). HPF and LPF denote, respectively,
high-pass and low-pass temporal filters.� indicates a summation. ABS denotes the absolute value operation, andX indicates multiplication. Each algorithm takes
input from two neighboring visual sampling points, and provides an output the temporal mean of which indicates the direction of motion.

losing the advantages in power consumption and size over con-
ventional approaches. We present implementations of three dif-
ferent STF-based motion algorithms and compare their perfor-
mance, not only to each other but also to monolithic imple-
mentations of the same algorithms [16]. A novel element of
our implementation is the use of a spike integrator to emulate
the delay of a low-pass filter (LPF). We thus improve the fill
factor while allowing significantly more complicated motion
processing to be performed.

II. VISUAL MOTION ALGORITHMS

The three visual motion algorithms used in this paper
(shown in Fig. 2) are the Adelson–Bergen (AB) motion energy
model [19], the Hassenstein–Reichardt (HR) correlation model
[20] and the Barlow–Levick (BL) motion detection model
[21]. These algorithms were devised as biological models to
describe, respectively, primate cortical complex cells, the opto-
motor response in flies, and direction selectivity in the retina of



ÖZALEVLI AND HIGGINS: RECONFIGURABLE BIOLOGICALLY INSPIRED VISUAL MOTION SYSTEMS 81

Fig. 3. The high-level architecture of a sender-receiver chip pair. Each pixel is composed of positive and negative sub-pixels that together process a complementary
representation of intensity changes in the focal plane.P pixels on the sender chip transmit events indicating increases in local light intensity, whileN pixels transmit
decreases. Events arriving at P and N pixels on the receiver chip are integrated to compute the motion signal according to the specific algorithm. Results of the
motion computation can be accessed via serial scanners.

a rabbit, and yet share many common features. They all remove
the long-term illumination information using a high-pass filter
(HPF), and compare the intensity from one visual sampling
point with a delayed version (through an LPF) of a neigh-
boring visual sampling point. Through different mathematical
operations, all three algorithms represent in their mean output
the energy in a band of spatial and temporal frequency which
corresponds to motion. Each algorithm incorporates a nonlin-
earity, which is essential since all inputs to the motion detector
(after high-pass filtering) are zero-mean, and the output of
a linear system with these inputs must also have zero mean.
Finally, all algorithms have been modified from their canonical
form to facilitate circuit implementation. These algorithms are
analyzed and compared mathematically in a related paper [16],
which also describes and characterizes their monolithic analog
VLSI implementations.

III. MULTICHIP IMPLEMENTATION

To facilitate the kind of visual motion processing architec-
tures shown in Fig. 1, we split the visual motion processing
algorithms into two stages. The first stage, incorporating pro-
cessing common to all three motion algorithms, contains a 2-D
array of phototransduction circuits, and transmits information
about local intensity changes across an asynchronous digital
bus using the Address-Event Representation (AER) protocol,
described below. The second stage, incorporating circuitry spe-
cific to the algorithm being implemented, contains circuitry to
compute local visual motion. Since visual images change rather
slowly, high-frequency responses of the analog circuitry are not
required and thus subthreshold MOSFET biases are used wher-
ever possible.

We have previously employed a similar multichip neuromor-
phic design strategy [17], [22], but the motion algorithm used
in those cases was feature-based and did not operate at very
low contrast. A number of other authors have published related
designs, including Boahen [23] who computes visual motion

with a photosensitive sender chip that is a model of the pri-
mate retina, and Indiveri et al. [24] who showed a multichip
motion processor based on a silicon model of the primate visual
cortex. See [22] for a review of modular multichip neuromor-
phic architectures.

The high-level architecture of the sender and receiver chips
is illustrated in Fig. 3. The asynchronous digital bus between
the two chips employs the AER protocol [18], [25], which mul-
tiplexes discrete “events” from every pixel on the sender chip
onto a single bus with each event identified by its and spatial
address. A four-phase handshake using request and acknowl-
edge lines is used to communicate events between the two chips.
Analogous to biological neurons encoding their activation in the
frequency of action potentials, in our implementation the fre-
quency of events transmitted from a particular spatial address
on the sender chip represents the rate of intensity change at that
location. Both sender and receiver chips are composed of a 2-D
array of pixels, each of which consists of P and N sub-pixels.
On the sender chip, the positive sub-pixel communicates in-
tensity changes that increase from the mean luminance, and
the negative sub-pixel communicates intensity decreases. The
combination of these two channels accomplishes a complemen-
tary coding which allows the greatest precision when intensity
changes are greatest. In the current implementation, the positive
and negative sub-pixels share the same photoreceptor input. On
the receiver chip, the two “spike trains” from the positive and
negative pixel are integrated to compute local motion informa-
tion. In each chip, analog and digital circuits are powered from
separate supply lines to avoid noise coupling.

A. Photosensitive Sender Chip

The photosensitive sender chip consists of a 2-D focal plane
array of pixels that are used to transduce and process local light
intensity. Each pixel includes an adaptive photoreceptor [26],
shown in Fig. 4(a), which adapts to the local light intensity on
slow time scales providing high gain for transient signals that
are centered on the adaptation point. This capability is utilized to
extract intensity changes with respect to the adapted light level.
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Fig. 4. Analog circuit building blocks used in the photosensitive sender pixel. (a) Adaptive photoreceptor [26]. This circuit provides an output V sensitive to
transient changes, and a long-term intensity output V . V sets the frequency response and dc level of the output. V allows electronic adjustment of the
adaptation time constant and is typically set at less than 300 mV for a time constant around 5 s. V is set near the dc level of V . (b) Simple transconductance
amplifier circuit. V controls the current output level. (c) Current-mode full-wave rectifier circuit [27]. V is set at a level favorable for the circuit
providing I .

Fig. 5. AER sender pixel interface circuit, two of which are included in each sender pixel. This circuit communicates with peripheral sender circuitry to transmit
local events off-chip. When the input current I exceeds the leak current controlled by V , it discharges the voltage V until the threshold (set by V ) of
the double inverter is reached. The signal R is then asserted to the row arbiter. When acknowledged by the signal ACK, the vertical signal D is sent to a
column latch, which also resets V .

The capacitor ratio , to which the transient gain is pro-
portional, is 11. The photoreceptor output is used in con-
junction with the voltage that represents the adaptation state
of the photoreceptor in order to remove the mean light intensity
from the input signal, accomplishing the high-pass filtering step
common to all motion algorithms. A simple transconductance
amplifier [Fig. 4(b)] is used to convert the difference of these
two voltages into a current, which is then separated into its pos-
itive and negative components using a full-wave rectifier circuit
[27] [Fig. 4(c)]. The resulting currents and correspond,
respectively, to increases and decreases in local luminance.

These two currents are then fed into two separate AER in-
terface circuits, shown in Fig. 5. The negative current must be

mirrored before being connected to this circuit. In each case,
a bias current (from the transistor) is provided to prevent
AER bus response to noise. These circuits generate 2-D requests
to the peripheral AER interface circuitry, such that trains of
events representing the value of the two currents and
are transmitted to the receiver chip. Positive and negative events
from the same pixel share a common column address, but are in
neighboring rows in the AER address space.

The details of the AER interface circuit are explained in [28],
and the peripheral AER circuitry in [18]. The sender chip also
contains serial scanners [29] to allow for readout of the raw
photoreceptor values. A summary of the specifications of the
sender chip is given in Table I.
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TABLE I
MODULAR MOTION SENDER/RECEIVER CHIP SPECIFICATIONS.

EACH CHIP WAS FABRICATED IN A 1.6-�m PROCESS

ON A 4.41-mm DIE. SENDER CHIP PIXEL ALSO

CONTAINS A 1378-�m PHOTODIODE, YIELDING

A FILL FACTOR OF 4.8%. NOTE THAT A LARGE

PERCENTAGE OF EACH RECEIVER PIXEL IS

DEVOTED TO SPIKE INTEGRATION CAPACITORS

Fig. 6. AER receiver pixel interface circuit. This circuit receives decoded
labeled-line requests from the peripheral circuitry on signals X and Y and
acknowledges the event with signal PIXACK while integrating the received
spike on the capacitor C . Bias V prevents charge pumping. Parameters
of integration are controlled by biases V and V (see text).

B. Motion Computing Receiver Chips

The motion computing receiver chips are designed to per-
form small field motion computation by processing the intensity
change information transmitted by the photosensitive sender
chip. These receiver chips have the same high-level chip ar-
chitecture but realize different STF tuned motion computation
models. Every receiver chip is composed of peripheral AER in-
terface circuitry, a 2-D array of motion computation pixels each
of which incorporates an AER pixel interface circuit, and serial
scanners [29] to allow readout of the motion response of each
pixel.

Peripheral address decoding and interface circuitry to support
the protocol are discussed in detail in [18]. The AER pixel inter-
face circuit in the receiver chip is illustrated in Fig. 6. Intensity
changes in the focal plane of the sender chip result in events
being transmitted on the AER bus to the receiver chip. The in-
terchip request signal with its two-dimensional address activates
the corresponding pixel in the receiver. This is achieved by using
address decoders to activate a particular pixel’s and
signals, which pulls low the gate of transistor M5, creating an
input voltage “spike”. The receiver pixel acknowledges the sig-
nals sent by the peripheral AER circuitry by pulling high the
PIXACK signal, which results in the release of the pixel selec-

tion signals, ending the input voltage spike. A sequence of these
spikes is integrated onto the capacitor resulting in an output cur-
rent , which is used in the motion computation.

In this work, we utilize the spike integrator circuit not only
to convert the incoming spikes back into an analog signal but
also to obtain the required delay, shown in Fig. 2 as an LPF,
between neighboring pixel signals. In order to justify that such
an implementation is reasonable, the output current of the circuit
is formulated below in terms of bias voltages and the frequency
of spikes coming into a particular pixel. Afterwards, the details
of each algorithm’s implementation are described.

1) Variable Phase Delay Using Spike Integrators: Referring
to Fig. 6, we formulate the input current in terms of the in-
coming spike train. For the purposes of this derivation, we as-
sume that MOSFETs operate in the subthreshold regime. Let
the spike frequency be a function of time, but assume for
simplicity that the input spike frequency is significantly higher
than the rate of change of the spike frequency. For each pulse of
stereotyped width , a quantum of charge is delivered which is
closely approximated by

(1)

where is the power-supply voltage, is the preconstant for
subthreshold PFET current, and is the parameter which relates
changes in gate voltage to changes in channel surface potential.
At the given spike rate, an average input current is delivered of

(2)

Given a particular input current, the current integrator circuit
can be shown to act as a linear first-order LPF in the special
case where variations in are small relative to the sustained
value of . This corresponds to the assumption about spike
frequency made above.

We start the analysis of the circuit by writing a KCL equation
at the capacitor node

(3)

The capacitor current can be written as . Since
the output current is amplified by the current mirror tilt ,
the output current can be formulated in terms of and
as . In order to represent in terms of

, we use the chain rule to relate the time derivative of to
the time derivative of

(4)

where

(5)

and since and , we can
obtain the following equation:

(6)

By combining (4), (5), and (6), we can show that the relation
between and can be expressed as follows:

(7)
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Fig. 7. Simulated current outputs of two integrators biased with different V and V biases. A periodic spike train is provided to the two integrators. The first
integrator is biased with a stronger V than the second. To compensate for the resulting difference in the amplitude of these currents, V is biased more strongly
for the second integrator than the first. These biases yield a relatively slower current response from the second integrator with approximately the same magnitude.

or further, as

(8)

where . If can be considered
constant (relative to its changes), we can take the Laplace trans-
form to obtain

(9)

This equation shows that the current-mode integrator can be
used as a first-order LPF in the special case where the input spike
frequency is significantly higher than the rate of change of the
spike frequency. The bias voltage provides current gain at
the output node to set the desired level. The time constant can
be reformulated in terms of the input current by realizing that,
on long time scales, . Thus

(10)

where the terms involving divide out. The bias voltage
controls the time constant of the filter. This circuit is ideal for
providing a phase delay, because the signal attenuation encoun-
tered when using a LPF for phase delay can be compensated for
using the gain term.

Even in the case where our assumption of a high input spike
frequency relative to changes in the spike frequency is violated,
the integrator circuit can be used to provide delay [30], although
it is not equivalent to a linear filter. Fig. 7 illustrates such a case
in which the output of two integrator circuits operating on the
same input spike train are biased to have different phase delays.

2) AB Sensor: The AB motion energy model was ex-
plicitly formulated to extract the energy in a band of spatial

and temporal frequency. In its canonical form, it obtains its
direction selectivity by integrating quadrature filters with a
nonlinear squaring function. A version of the AB algorithm
was implemented on a general-purpose analog neural computer
by Etienne-Cummings et al. [12]. Later, Higgins and Korrapati
[16], [31] implemented a monolithic analog VLSI sensor based
on this algorithm.

In the present implementation, the algorithm for which is
shown in Fig. 2(a), the spatial filtering is trivialized by simply
using two neighboring photoreceptor outputs. This provides the
necessary spatial phase difference between the two photore-
ceptor inputs, but does not achieve quadrature phase. Spike in-
tegration circuits were used to emulate temporal filters in the
model. Since spike integration circuits are a necessary part of
the AER communications system, this is highly parsimonious.
Each incoming spike train is integrated simultaneously by two
spike integrator circuits adjusted to have different phase delays
by using their respective biases and . Thus, one
channel is delayed relative to the other. This requires duplication
only of transistors M6 through M8 from Fig. 6; transistors M1
through M5 are shared between the two spike integrators. Ad-
ditionally, since each output current is needed in two places to
complete the local motion computation, and again in two places
in the neighboring motion computation, transistor M8 is repli-
cated four times in each spike integrator. Finally, the nonlin-
earity required to realize the algorithm is attained in the imple-
mentation by employing an absolute value operation.

The multichip implementation of the AB algorithm is illus-
trated in Fig. 8(a). On the sender chip, each photoreceptor’s re-
sponse is split into two channels corresponding to increasing
and decreasing intensity from the long-term mean. On the re-
ceiver chip, each of these channels is converted to a current with
a pair of integrator circuits, one of which is delayed relative to
the other. The remainder of the computation is performed in cur-
rent mode, largely by utilizing Kirchoff’s current law to perform
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Fig. 8. Block diagrams of multichip motion sensor implementation. (a) Adelson–Bergen. (b) Barlow–Levick. (c) Hassenstein–Reichardt. For the BL and HR
implementations, only the receiver portion is shown; the sender portion is identical in all three implementations. V and V represent the photoreceptor
transient and sustained illumination output, respectively. In the sender portion, I and I refer to positive and negative parts of the photoreceptor signal, and in
the receiver portion, I and I represent the integrated versions of these signals. I D and I D are the signals that are delayed relative to I and I .

sums. Current mirrors are used to reverse the sign of current sig-
nals. A current-mode absolute value circuit [32], [Fig. 9(a)] is
used to implement the necessary nonlinearity. The bias
is set close enough to that when the PFET current mirror is
conducting, the drain of the input transistor cuts off current flow
through (and thus the NFET mirror). Conversely, when
the PFET mirror is turned off by current flow in the opposite
direction, is turned on to allow current flow through the
NFET mirror. By setting very high, it is possible to limit
the current through the NFET mirror and thus control the rela-
tive contribution of positive and negative currents to the absolute
value. Each pixel in the AB receiver chip consists of two spike
receiver circuits (each with a pair of accompanying integrators),
four absolute value circuits, and 5 current mirrors. A summary
of the specifications of the AB receiver chip is given in Table I.
Much of the pixel area is used for conservatively large spike in-
tegration capacitors, which for the two spike integrators in each
sub-pixel are approximately 5 and 7 pF. Since one of the spike

integration capacitors is larger than the other, there is still a rel-
ative delay even at the same bias setting.

3) BL Sensor: The BL motion detection model [21] uses a
local photoreceptor signal with an inhibitory connection from
a neighboring photoreceptor to obtain direction selectivity.
Benson and Delbruck [33] utilized a similar inhibition mecha-
nism to implement a monolithic analog VLSI vision sensor.

The version of the BL algorithm implemented in this work
is shown in Fig. 2(b). Similar to the AB implementation de-
scribed above, the BL implementation uses spike integrators
to achieve the necessary delay between incoming spike trains.
Each spike integrator current is needed only once to complete
the local motion computation, and once again in the neighboring
motion computation, so transistor M8 in Fig. 6 is replicated only
twice in each spike integrator. The receiver chip computation is
illustrated in Fig. 8(b). Following the integrator outputs, three
current mirrors and two current-mode absolute value circuits
[Fig. 9(a)] are necessary to complete the computation.
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Fig. 9. Analog circuit building blocks used in the motion computing receiver pixels. (a) Absolute value circuit [32]. Regardless of its sign, the input current is
gated to I . V can be used to control the relative contribution of positive and negative currents to the output. (b) Four quadrant current multiplier [38]. V and
I provide bias currents. I and I are the bidirectional input currents, and I and I are the output currents, meant to be sensed at low output voltages.
The difference of output currents gives the final output I = (I I )=(I ) for jI j and jI j > I .

A summary of the specifications of the BL receiver chip is
given in Table I. In comparison to the HR and AB implemen-
tations, this motion detection pixel contains significantly fewer
transistors. Nearly half of the layout for this receiver pixel was
used for large spike integration capacitors.

4) HR Sensor: The HR correlation model is similar to the
BL model described above, but employs a multiplication for
the interaction of its delayed and undelayed input channels.
This model was originally proposed to explain the optomotor
response of the beetle Chlorophanus [20]. In a variety of
studies the HR correlation model has been implemented on
monolithic analog VLSI chips to estimate the local motion
field [13], [34]–[36]. Most closely related to this work, Liu [36]
and Harrison [13] have used this algorithm to model the fly’s
motion detection system.

The version of the HR algorithm implemented in this work
is shown in Fig. 2(c). Similar to both implementations previ-
ously described, the HR implementation uses integrators to pro-
vide the necessary delay between photoreceptor channels. Like
the BL implementation, each spike integrator current is needed
only once to complete the local motion computation, and once
again in the neighboring motion computation, so transistor M8
in Fig. 6 is replicated only twice in each spike integrator. The re-
ceiver chip computation is illustrated in Fig. 8(c). Five current
mirrors are necessary to accomplish the subtractions, and two
four-quadrant current-mode multipliers (shown in Fig. 9(b)) are
used. A summary of the specifications of the HR receiver chip
is given in Table I.

IV. CHARACTERIZATION RESULTS

In this section, we present detailed characterization results
of three motion processing systems, each consisting of the
photosensitive sender chip paired with one of the three motion
receiver chips described in the previous section. The char-
acterizations were performed by presenting the sender chip
with computer-generated 2-D sinusoidal grating stimuli on an
LCD screen (see [16] for more details of our characterization
methods). The current output of a single pixel of each sensor
was converted to voltage by utilizing an off-chip current sense

amplifier. Raw outputs were averaged over ten temporal periods
of the stimulus to remove the phase dependence of the sensors.

We refer to stimuli which move in that direction which elicits
the largest positive mean current output from the sensor as pre-
ferred direction stimuli, and stimuli which move in that direction
which elicits the largest negative mean current output from the
sensor as null direction stimuli. Each chip was biased to max-
imize the difference between mean outputs in response to pre-
ferred and null direction stimuli (which we use as a definition of
good performance) at an output current in the nanoamperes. At
a given bias setting, we define the “optimal” stimulus (or stim-
ulus parameter value) as the one that maximizes the difference
between mean outputs to preferred and null direction stimuli.
Whenever one or more parameters were being varied, all other
parameters were held at their optimal value. Each chip was char-
acterized with the same fixed mean illumination. The optimal
value of spatial frequency was 0.25 cycles per chip pixel. Each
chip was tuned for an optimal temporal frequency of 3 Hz.

The first visual characterization experiment was performed
by using a sinusoidal grating stimulus to test the direction se-
lectivity of the sensors for motion in the preferred direction
(which elicits a positive mean output from the sensor), for mo-
tion orthogonal to the sensor orientation (which elicits a zero
mean output), motion in the null direction (eliciting a negative
mean output), and for a nonmoving grating (which results in
zero output). The results of this experiment are seen in Fig. 10,
and quite clearly show their direction selectivity, as well as the
waveshape of the response of each sensor.

In Fig. 11, the spatiotemporal response of the sensors are
shown. These plots show the mean output of each sensor to si-
nusoidal stimuli over a range of spatial and temporal frequency.
The sensors respond best to a particular combination of spatial
and temporal frequency for which they are tuned and responses
decrease at other frequencies. The optimal temporal frequency
can be tuned electronically by altering the value of the inte-
grating receiver circuit bias voltages and as illus-
trated in Fig. 12.

Next, stimulus contrast was varied over the entire range pos-
sible with the LCD screen used in the experiment. Fig. 13 shows
the mean output of each sensor as contrast is changed. All the
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Fig. 10. Raw temporal output of the motion sensors (in nanoamperes). (a) AB sensor. (b) BL sensor. (c) HR sensor. These outputs are not averaged and represent
the real time single pixel response of the sensors. In the interval from 0 to 3 s a sinusoidal stimulus is presented in the preferred direction (positive mean output).
Between 3 and 6 s a stimulus moving orthogonal to the sensor orientation is presented (zero mean output). Between 6 and 9 s, the sensor is exposed to a null
direction stimulus (negative mean output). Finally, a stationary stimulus is presented between 9 and 11 s.

sensors responded strongly down to 10% contrast and determi-
nation of the direction of motion was possible at significantly
lower contrasts. The HR sensor’s mean output is negative to pre-
ferred-direction stimuli at low contrast (see Discussion).

Since the power consumption of each chip in this system is
data dependent, power-supply current for each chip was mea-
sured both while unstimulated, and during operation with an
optimal sinusoidal visual stimulus. Note that biases were opti-
mized for performance, not for low power consumption. Power
consumption figures are summarized in Table II.

V. DISCUSSION

We have presented a modular multichip implementation of
visual motion algorithms which makes possible the efficient
board-level implementation of complex visual motion pro-
cessing schemes. The results shown demonstrate that we have
been able to overcome the noise difficulties of mixed-signal

VLSI design to achieve performance comparable to monolithic
implementations of the same algorithms [16]. The presented
designs all have a saturating response to the contrast of moving
stimuli, are capable of the detection of visual motion with as
little as a few percent contrast, and are tunable to motion at
temporal frequencies as low as 0.2 Hz.

Since this system fundamentally performs a low signal-level
analog motion computation, but also incorporates high signal-
level asynchronous digital circuitry, a number of mixed-signal
design features were required to avoid the undesired introduc-
tion of noise onto the analog signals. On all chips, separate
power-supply lines are provided for analog (relatively steady
power consumption) and digital (switching power consumption)
signals to avoid noise coupling through the power supply. These
power supplies are separately regulated off-chip. Most circuits
are designed using a differential current signal representation to
reduce capacitively coupled noise. Large spike integration ca-
pacitors are used to reduce the impact of the AER bus spike
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Fig. 11. Mean output of the motion sensors to variation of spatial and temporal frequency, shown in nanoamperes. (a) AB sensor. (b) BL sensor. (c) HR sensor.
Each point on these plots indicates the mean output of a sensor to a sinusoidal stimulus with a particular combination of spatial and temporal frequency. Lighter
gray levels indicate positive and darker gray levels indicate negative mean output.

rate on the analog signals in the receiver chip. In all pixel de-
signs, analog circuitry is isolated from the substrate minority
carrier injection of digital circuitry at the layout level by the use
of guard structures. Additionally, the core of each chip (incor-
porating all of the analog circuitry) is isolated from the asyn-
chronous digital periphery by a large guard ring.

The multichip implementation of the AB algorithm is quite
similar to its monolithic implementation, while the two imple-
mentations of the BL and HR algorithms have considerable
differences. These differences are driven by the fact that, in the
multichip implementation, all photoreceptor signals arrive for
motion processing in current mode. All monolithic implemen-
tations use a voltage-mode - LPF to produce the required
delay, while the multichip implementations use the AER spike
integration circuits for this purpose. After delay filtering, the
AB receiver chip employs the same current-mode circuitry
as in the monolithic implementation. Unlike the monolithic
BL implementation, the BL receiver chip performs signal

differencing in current mode and employs a simpler absolute
value circuit. The HR receiver chip multiplies signals in cur-
rent-mode, whereas the monolithic HR implementation uses a
voltage-mode Gilbert multiplier. By limiting the photoreceptor
signal processing circuitry in the focal plane, the sender chip
achieves a fill factor of approximately 5%, which is better
than two out of the three monolithic implementations, while
allowing for much more complex motion computations than
the monolithic implementations.

The raw data of Fig. 10 show the direction selectivity of each
sensor. Note that, despite the mixed-signal nature of this design,
these analog signals are not overly corrupted by noise at the
relatively high frequency of the digital interchip communica-
tions bus. The fact that asynchronous data transmission is used
to produce the data is apparent in the HR raw output for orthog-
onal stimuli, which relies on a precise balance between signals
from neighboring photoreceptors. This HR output shows spikes
of both signs at random, due to minor signal variations from
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Fig. 12. Variation of temporal frequency tuning, illustrated for the BL sensor. By changing the spike integrator biases V and V , it is possible to change
the temporal frequency tuning of the sensor. For this experiment, V was fixed at 4.12 V. Each curve in these plots is at a different V bias setting, varying
from 4.19 V (lowest center frequency) to 3.93 V (highest center frequency). Each curve shows the mean sensor output in response to a sinusoidal stimulus in the
preferred direction as temporal frequency is varied. The overall envelope of all plots is the photoreceptor temporal frequency response, the low frequency cutoff of
which is due to adaptation, and the high frequency cutoff of which is due to the capacitance driven at its output and its bias setting.

the sender chip. Each algorithm is clearly able to represent the
direction of motion in its mean output and, allowing for differ-
ences in implementation, the waveforms are qualitatively com-
parable to those of the monolithic implementations of the same
algorithms.

The STF plots for each sensor (Fig. 11) show a tuning in both
spatial and temporal frequency, as observed in the monolithic
implementations and predicted by theoretical analysis [16].
Each sensor shows a peak response at a spatial frequency of
approximately 0.25 cycles per pixel, as expected from the
theoretical analysis. The AB and BL sensors show a slight
offset in spatial and temporal frequency between the positive
and negative peak responses. This is due to minor differences
between the delays in the two “low-pass filtered” pathways of
the motion detector, likely caused by mismatch in the spike
integrator circuits. Fig. 12 shows that, by alteration of the
biases, the peak temporal response frequency of the sensors
can be adjusted over a wide range, limited by the photore-
ceptor bandpass frequency response. At a single bias setting,
the sensors can detect motion for a speed range of more than
one order of magnitude. These responses justify the use of
the spike integration circuit as a temporal filter in the motion
computation.

The responses to contrast shown in Fig. 13 saturate, such
that for contrasts greater than 20% all stimuli elicit nearly
the same mean output. This saturation arises from the sender
chip, and is due to current output saturation of the transcon-
ductance amplifier used to remove the mean luminance from
the photoreceptor signal. This rejection of contrast is a highly
desirable quality, allowing response to motion without undue
regard to contrast, and is also observed in biological motion-

sensitive cells [37], and in the monolithic implementation of
the AB sensor.

The contrast data for the HR sensor [Fig. 13(c)] show an in-
teresting artifact in which mean outputs at very low contrast are
all negative. This arises from our use of the four quadrant mul-
tiplication circuit [Fig. 9(b)] in the HR receiver pixel. Due to
the Early effect, this circuit works precisely as a four quadrant
multiplier only if the output currents and are held at
the same voltage. Diode-connected transistors are meant to be
used here to mirror out each current, but in our implementation
we used a current mirror to directly subtract these two current
outputs to save transistors. Due to this shortcut, at low current
levels the mismatch due to the Early effect leads to an undesired
change of sign.

Power consumption figures are summarized in Table II. The
power consumption of the presented designs (roughly 10 mW
for any sender/receiver pair) is considerably above that of the
monolithic versions (which all consumed whole-chip power in
the hundreds of microwatts), primarily due to power consump-
tion by digital bias structures. This power consumption results
from passive pull-up and pull-down transistors in the peripheral
AER circuitry, most of which scale with the number of rows
and columns of the processor array. The analog circuits in the
processor array consume a modest amount of power, which is
mostly consumed in bias currents and thus independent of vi-
sual stimulation. When stimulated, the AER communications
circuitry consumes additional power (“Added DVdd” column)
to transmit data from sender to receiver. All four of the the
presented designs were fabricated on minimum-size dies in a
low-cost experimental process available through MOSIS, and
thus the pixel counts are extremely small by modern standards.
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Fig. 13. Variation of the contrast of a sinusoidal stimulus. The responses represent the mean output of the sensors in nanoamperes. Circles indicate motion in
the preferred direction; asterisks in the null direction. (a) AB sensor. (b) BL sensor. (c) HR sensor. While all sensors share a saturating response to contrast and all
sensors are able to determine stimulus direction at less than 10% contrast, they do differ in the details of their low contrast response. The HR sensor, in particular,
has a negative mean output to low contrast stimuli of either direction (see text). Due to the brightness of the “black” regions of the LCD screen, the maximum
possible contrast was approximately 80%.

However, due to the pixel-parallel nature of the design, there
is no technical obstacle to the fabrication of larger arrays. As a
first order approximation, as each array is scaled up the digital
bias power scales with the number of rows/columns, the analog
bias power scales with the pixel count, and the communications
power scales as the logarithm of the number of rows/columns
(that is, the size of the interchip communications bus). By this
method, the total power consumption (at the same bias settings)
of a practically realistic 64 64 sender/receiver pair would be
183 mW. However, the same size monolithic motion processor
array (using the lowest monolithic pixel power consumption of
1.04 W/pixel) would only consume 4.3 mW (around 43 times
less power). Even taking the array size to an extreme 300 300,
the power consumed by the multichip system (2.6 W) is 28 times
more than the comparable monolithic system (94 mW). Though
at any reasonable resolution the multichip implementation does
not approach the power consumption of a monolithic design,

TABLE II
BEST-PERFORMANCE TOTAL POWER CONSUMPTION OF MODULAR MOTION

CHIPS. DVdd COLUMN INDICATES POWER SUPPLIED TO DIGITAL CIRCUITS;
AVdd COLUMN INDICATES POWER SUPPLIED TO ANALOG CIRCUITS. TOTAL

POWER FIGURES LISTED ARE FOR ENTIRE CHIP INCLUDING BOTH ANALOG

AND DIGITAL POWER SUPPLIES. THE ‘ADDED DVdd’ COLUMN INDICATES

THE INCREASE IN DVdd POWER CONSUMPTION DUE TO AER BUS

RESPONSE TO VISUAL STIMULATION; AVdd POWER CONSUMPTION

HAD NO MEASURABLE STIMULUS DEPENDENCE. IN ALL CASES,
POWER-SUPPLY VOLTAGE WAS 5 V

the power figures are still likely below those of an embedded
CCD/DSP combination performing the same task in real-time.
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Additionally, for a fair comparison it must be noted that both the
multichip and monolithic custom VLSI versions perform mo-
tion processing at a bandwidth of around 100 Hz, providing an
effective 200 frames/s sampling rate which could be used for
closed-loop control.

The size of each sender chip pixel could be reduced by alter-
nating pixels with positive and negative response rather than by
having each pixel respond to both signs of intensity change. This
approximation would be particularly effective with large array
sizes. However, at low array sizes, better performance will be
obtained by colocating these two responses. A further improve-
ment upon using two sender interface circuits per pixel would
be to detect the sign of intensity change and direct it to the ap-
propriate AER address, utilizing only a single sender interface
circuit.

In addition to the motion outputs which have been the pri-
mary subject of this paper, a large amount of other vision data is
available from the multichip vision processor. The sender chip
raw photoreceptor values can be scanned out and a visual image
constructed. In addition to the use of a motion receiver chip, a
simpler receiver chip that merely integrates spike trains can be
used to provide a “change-detection image,” which shows only
those parts of the image which change. Finally, using the fact
that the output of each motion pixel is a current, the scanners
on each motion receiver chip can be used to sum selected sub-
regions of each chip, and provide global motion information.
Due to the design of these scanners [29], two disjoint subre-
gions can be provided simultaneously. The availability of all of
this vision data from a compact custom VLSI vision system will
allow extremely small autonomous robots to have powerful vi-
sual capabilities.
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