
 

 

 

A MULTICHIP NEUROMORPHIC MOTION PROCESSOR FOR 

EXTRACTING EGOMOTION INFORMATION 

 
 

by 
 

Shaikh Arif Shams 
_____________________ 

 
 
 
 
 
 
 
 

A Thesis Submitted to the Faculty of the 
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

In Partial Fulfillment of the Requirements  
For the Degree of  

 
MASTER OF SCIENCE 

 
In the Graduate College 

THE UNIVERSITY OF ARIZONA 
 

2 0 0 0 
 
 
 
 



  

   
   
  2 

STATEMENT BY AUTHOR 
 
 

 This thesis has been submitted in partial fulfillment of requirements for an 
advanced degree at The University of Arizona and is deposited in the University 
Library to be made available to borrowers under rules of the library. 
 
 Brief quotations from this thesis are allowable without special permission, 
provided that accurate acknowledgment of source is made. Requests for 
permission for extended quotation from or reproduction of this manuscript in 
whole or in part may be granted by the head of the major department or the Dean 
of the Graduate College when in his or her judgment the proposed use of the 
material is in the interests of scholarship. In all other instances, however, 
permission must be obtained from the author. 
 
 
 
 
 
 

SIGNED:______________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVAL BY THESIS DIRECTOR 

This thesis has been approved on the date shown below: 
 
 
 
 
 
 

_____________________________________________           _____________________ 
            Charles M. Higgins                                         Date 

                    Assistant Professor of  
        Electrical and Computer Engineering 



  

   
   
  3 

 
ACKNOWLEDGEMENTS 

 
 
 At first, I like to thank my advisor, Charles M. Higgins. His guidance 
throughout the project was invaluable to me.  
 

This work was carried out at the National Science Foundation's 
State/Industry/University Cooperative Research Centers' (NSF-S/IUCRC) Center 
for Low Power Electronics (CLPE).  CLPE is supported by the NSF (Grant #EEC-
9523338), the State of Arizona, and the following companies and foundations: 
Conexant, Gain Technology, Intel Corporation, Medtronic Microelectronics 
Center, Microchip Technology, Motorola, Inc., The Motorola Foundation, ON 
Semiconductor, Philips Semiconductors, Raytheon, Syncron Technologies, LLT, 
Texas Instruments and Western Design Center. 

 
I also like to thank all the members of our lab for good advice and 

personal help.  
   



  

   
   
  4 

 
DEDICATION 

 
 
 
 
 
 
 

To my parents. 



  

   
   
  5 

 
Table of Contents 

 
 
 

LIST OF FIGURES……………………………………………………………….……………. 7 

ABSTRACT ……………………………………………………………….………………….13 

 
1 INTRODUCTION .............................................................................................................................. 14 

1.1 BACKGROUND ............................................................................................................................... 14 
1.2 RELATED WORK............................................................................................................................ 16 
1.3 ORGANIZATION OF THE THESIS...................................................................................................... 17 

2 HARDWARE ARCHITECTURE..................................................................................................... 18 

2.1 BACKGROUND ............................................................................................................................... 18 
2.2 MULTICHIP SYSTEM ...................................................................................................................... 19 
2.3 HARDWARE COMPONENTS ............................................................................................................ 21 

2.3.1 Photosensitive Sender Chip .................................................................................................. 21 
2.3.2 Motion Transceiver Chip ...................................................................................................... 25 
2.3.3 Integrating Receiver Chip..................................................................................................... 30 

3 SYNTHESIS OF COMPLEX MOTION UNITS............................................................................. 33 

3.1 INTRODUCTION .............................................................................................................................. 33 
3.2 EXPANSION-SENSITIVE UNIT ......................................................................................................... 33 
3.3 CONTRACTION-SENSITIVE UNIT..................................................................................................... 36 
3.4 ROTATION-SENSITIVE UNITS ......................................................................................................... 38 
3.5 VARYING RECEPTIVE FIELD .......................................................................................................... 40 
3.6 OFF-CENTERED FOE TUNING ....................................................................................................... 42 
3.7 LARGER FOE REGION ................................................................................................................... 45 

4 EXPERIMENTAL RESULTS........................................................................................................... 48 

4.1 INTRODUCTION .............................................................................................................................. 48 
4.2 EXPERIMENTAL SETUP .................................................................................................................. 48 
4.3 POWER CONSUMPTION .................................................................................................................. 51 
4.4 PERFORMANCE .............................................................................................................................. 51 
4.5 EXPERIMENT 1: SIMULTANEOUS TUNING TO EXPANSION, CONTRACTION, CCW AND CW ROTATION 
AND FOUR DIRECTIONS OF TRANSLATIONAL MOTION................................................................................. 52 

4.5.1 Setup ..................................................................................................................................... 52 
4.5.2 Result .................................................................................................................................... 54 

4.6 EXPERIMENT 2: EXPANSION SENSITIVITY WHILE CHANGING RECEIVER THRESHOLD ..................... 63 
4.6.1 Setup ..................................................................................................................................... 63 
4.6.2 Result .................................................................................................................................... 64 

4.7 EXPERIMENT 3: VARYING RECEPTIVE FIELD SIZE .......................................................................... 65 
4.7.1 Setup ..................................................................................................................................... 65 
4.7.2 Result .................................................................................................................................... 66 

4.8 EXPERIMENT 4: EFFECTS OF PIC SPEED AND SEQUENTIAL MAPPING ............................................. 68 
4.8.1 Setup ..................................................................................................................................... 68 
4.8.2 Result .................................................................................................................................... 68 



  

   
   
  6 

Table of Contents - continued 
 
 

4.9 EXPERIMENT 5: EXPANSION-SENSITIVE UNITS FOR 3X3 FOE POSITIONS ...................................... 69 
4.9.1 Setup ..................................................................................................................................... 69 
4.9.2 Result .................................................................................................................................... 70 

4.10 EXPERIMENT 6: LARGE AND SMALL EXPANDING FIELD ................................................................. 72 
4.10.1 Setup ..................................................................................................................................... 72 
4.10.2 Result .................................................................................................................................... 73 

4.11 EXPERIMENT 7: EFFECTS OF RECEIVER PIXEL MISMATCH .............................................................. 74 
4.11.1 Setup ..................................................................................................................................... 74 
4.11.2 Result .................................................................................................................................... 74 

4.12 EXPERIMENT 8: VARIATION OF EXPANDING STIMULUS SPEED ....................................................... 75 
4.12.1 Setup ..................................................................................................................................... 75 
4.12.2 Result .................................................................................................................................... 75 

4.13 EXPERIMENT 9: VARIATION OF EXPANDING STIMULUS WIDTH ...................................................... 75 
4.13.1 Setup ..................................................................................................................................... 77 
4.13.2 Result .................................................................................................................................... 77 

4.14 EXPERIMENT 10: VARIATION OF CCW ROTATING STIMULUS SPEED ............................................. 78 
4.14.1 Setup ..................................................................................................................................... 78 
4.14.2 Result .................................................................................................................................... 78 

4.15 EXPERIMENT 11: VARIATION OF CCW ROTATING STIMULUS WIDTH............................................. 80 
4.15.1 Setup ..................................................................................................................................... 81 
4.15.2 Result .................................................................................................................................... 81 

5 CONCLUSIONS ................................................................................................................................. 84 

5.1 LIMITATIONS ................................................................................................................................. 84 
5.2 FUTURE WORK .............................................................................................................................. 85 

6 APPENDIX A...................................................................................................................................... 87 

6.1 DETAILED SCHEMATIC .................................................................................................................. 87 

7 APPENDIX B...................................................................................................................................... 92 

7.1 PIC PROGRAMMING ...................................................................................................................... 92 
7.1.1 Simultaneous Synthesis of Complex and Translational Units............................................... 92 
7.1.2 Synthesis of the Expansion-sensitive Unit Only .................................................................... 97 
7.1.3 3X3 FOE Positions ............................................................................................................. 101 

8 APPENDIX C.................................................................................................................................... 114 

8.1 CIRCUIT BIASING......................................................................................................................... 114 
8.1.1 Simultaneous Synthesis of Complex and Translational Units............................................. 114 

9 APPENDIX D.................................................................................................................................... 115 

9.1 MATLAB FILES TO GENERATE FIGURES....................................................................................... 115 
9.1.1 Figures of Results ............................................................................................................... 115 
9.1.2 Figures of Theoretical Predictions ..................................................................................... 116 

9.2 FILES OF FIGURES ........................................................................................................................ 117 

10 REFERENCES ............................................................................................................................. 118 

 

 



  

   
   
  7 

List of Figures 
 

 

Figure 2.1: AER protocol summary. (a) the model for AER transmission: a sender chip communicates with 

a receiver chip via request, acknowledge and address lines. (b) the handshaking protocol for 

transmission using the above control and address lines: a request with a valid address leads to 

an acknowledgment, which in turn leads to falling request and falling acknowledge. .............. 19 
Figure 2.2: Block diagram of the multichip motion processor developed in this work. ............................... 20 
Figure 2.3: Layout of the sender chip fabricated on a MOSIS tiny chip in a 1.2 µm standard CMOS process.

................................................................................................................................................... 22 
Figure 2.4: Sender pixel circuitry. (a) Adaptive photoreceptor, (b) Nonlinear differentiator and (c) 

Communications interface circuit. ............................................................................................. 24 
Figure 2.5: Sender pixel burst response; this spike train is the response of an individual pixel to a passing 

edge. Since true spike width is approximately 50 ns and spike separation is on the order of 6 µs, 

the spike duration has been lengthened to make individual spikes visible. This 1.8 ms burst 

peaks at a spike rate of approximately 160 kHz and encompasses around 200 individual spikes. 

The stimulus edge occurred at approximately t = -15 ms........................................................... 25 
Figure 2.6: Layout of the transceiver chip fabricated on a MOSIS tiny chip in a 1.2µm standard CMOS 

process........................................................................................................................................ 26 
Figure 2.7: ITI motion algorithm; (a) Block diagram. (b) Simulated traces. An edge crossing from left to 

right pulls high (triggers) direction voltages for both directions Vr and Vl in pixel B. The same 

edge subsequently crossing pixel C pulls low (inhibits) the incorrect direction voltage Vl. The 

resulting positive current Iout indicates rightward motion. Pixels B and A interact similarly to 

detect leftward motion, resulting in a negative current Iout......................................................... 27 
Figure 2.8: Transceiver pixel circuits. (a) Communications interface circuit on the receiving side. (b) 

Motion circuit. The local TED signal Voutbar, coming through AER interface circuit, is used to 

pull high the direction voltages Vr and Vl when an edge passes. Vleft and Vright are the signals 

Vout coming from neighboring pixels, and are used to pull the direction voltages low. The bias 

Vleak sets the persistence time τpt of the motion signal. (c) Current output circuit. The state of the 

direction voltages determines the sign of the bi-directional output current Iout. Vlim sets its 

magnitude. (d) Communications interface circuit on the sending side. ..................................... 29 
Figure 2.9: Layout of the receiver chip fabricated on a MOSIS tiny chip in a 1.2µm standard CMOS 

process........................................................................................................................................ 30 
Figure 2.10: Receiver pixel consisting of an integrating circuit together with the communications interface 

circuit. ........................................................................................................................................ 31 



  

   
   
  8 

List of Figures - continued 
 
 
Figure 2.11: Vmem vs. frequency sketch. ....................................................................................................... 32 
Figure 3.1: Four channels sensitive to four different direction of motion: (a) 0°, (b) 90°, (c) 180° and (d) 

270°. Downward motion is considered the reference 0°, because this is the preferred direction 

of motion for the motion chip without any rotation of address field. Rotations are performed 

clock-wise. For example, 90° rotation makes leftward motion and so on.................................. 33 
Figure 3.2: Flow fields from each channel are shown that are to be combined to synthesize an expansion-

sensitive unit with the FOE at the center of the visual field....................................................... 34 
Figure 3.3: Resultant flow field to which the unit becomes sensitive as a result of the flow field 

combination specified in Figure 3.2........................................................................................... 35 
Figure 3.4: The pixels from each transceiver to be combined to make the processor sensitive to expanding 

patterns (with the FOE at the center of the visual field) are shown in black.............................. 35 
Figure 3.5: Theoretical prediction from individual channels in response to expanding patterns. (Xs, Ys)  

represents the coordinates of the FOE in pixels. Theoretically predicted value is represented by 

brightness. .................................................................................................................................. 36 
Figure 3.6: Theoretical prediction from expansion-sensitive unit with FOE at the center of the field of view 

in response to expanding patterns. (Xs, Ys)  represents the coordinates of the FOE in pixels. 

Theoretically predicted value is represented by brightness. ....................................................... 36 
Figure 3.7: Resultant flow field to which the unit becomes sensitive as a result of the specified flow field 

combination for contraction. ...................................................................................................... 37 
Figure 3.8: The pixels from each transceiver to be combined to make the processor sensitive to contracting 

patterns are shown in black. ....................................................................................................... 37 
Figure 3.9: Theoretical prediction from individual channels in response to contracting patterns. (Xs, Ys)  

represents the coordinates of the FOC in pixels. Theoretically predicted value is represented by 

brightness. .................................................................................................................................. 38 
Figure 3.10: Resultant flow field to which the unit becomes sensitive as a result of the specified flow field 

combination for CCW rotation................................................................................................... 39 
Figure 3.11: Resultant flow field to which the unit becomes sensitive as a result of the specified flow field 

combination for CW rotation. .................................................................................................... 39 
Figure 3.12: The pixels from each transceiver to be combined to make the processor sensitive to CCW 

rotating patterns are shown in black........................................................................................... 40 
Figure 3.13: The pixels from each transceiver to be combined to make the processor sensitive to CW 

rotating patterns are shown in black........................................................................................... 40 

 



  

   
   
  9 

List of Figures - continued 
 
 
Figure 3.14: The pixels from each transceiver to be combined to make the processor sensitive to expanding 

patterns using partial receptive field (6X6 in this case) are shown in black. ............................. 41 
Figure 3.15: Theoretical prediction from expansion-tuned unit using partial receptive field (6X6 in this 

case) in response to expanding patterns. (Xs, Ys)  represents the coordinates of the FOE in 

pixels. Theoretically predicted value is represented by brightness. ........................................... 42 
Figure 3.16: The pixels from each transceiver to be combined to make the processor sensitive to large and 

small expanding fields simultaneously are shown in black and gray color respectively............ 42 
Figure 3.17: Theoretical prediction from expansion-sensitive unit tuned to large expanding field. (Xs, Ys)  

represents the coordinates of the FOE in pixels. Theoretically predicted value is represented by 

brightness. .................................................................................................................................. 43 
Figure 3.18: The pixels from each transceiver to be combined to make the processor sensitive to expanding 

patterns with an off-centered FOE are shown in black. ............................................................. 43 
Figure 3.19: Theoretical prediction from expansion-sensitive unit tuned to expanding patterns with an off-

centered FOE. (Xs, Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted 

value is represented by brightness.............................................................................................. 43 
Figure 3.20: The pixels from each transceiver to be combined to make the processor sensitive to expanding 

patterns with different positions of FOE simultaneously are shown with different symbols. .... 44 
Figure 3.21: Theoretical outputs from four expansion-sensitive units tuned to four different positions of 

FOE. (Xs, Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted value is 

represented by brightness. .......................................................................................................... 45 
Figure 3.22: The pixels from each transceiver (less than the entire half) to be combined to make the 

processor sensitive to expanding patterns with a larger region of FOE position are shown in 

black. .......................................................................................................................................... 46 
Figure 3.23: The pixels from each transceiver (more than the entire half) to be combined to make the 

processor sensitive to expanding patterns with a larger region of FOE position are shown in 

black. .......................................................................................................................................... 46 
Figure 3.24: Output from expansion-tuned unit tuned to expanding patterns with larger region of FOE 

(corresponding to the mapping in Figure 3.22). (Xs, Ys)  represents the coordinates of the FOE 

in pixels. Theoretically predicted value is represented by brightness. ....................................... 47 
Figure 3.25: Output from expansion-tuned unit tuned to expanding patterns with larger region of FOE 

(corresponding to the mapping in Figure 3.23). (Xs, Ys)  represents the coordinates of the FOE 

in pixels. Theoretically predicted value is represented by brightness. ....................................... 47 
Figure 4.1: Experimental setup..................................................................................................................... 49 



  

   
   
  10 

List of Figures - continued 
 
 
Figure 4.2: Photograph of the experimental setup. ....................................................................................... 49 
Figure 4.3: Photograph of the expanding/contracting stimulus. ................................................................... 50 
Figure 4.4: Photograph of the CCW/CW rotating stimulus. ......................................................................... 50 
Figure 4.5: Photograph of the moving bar stimulus...................................................................................... 50 
Figure 4.6: Theoretical performance as a function of the considered central region. ................................... 52 
Figure 4.7: Bursts of requests coming out of the PIC. .................................................................................. 53 
Figure 4.8: Outputs from eight different tuned units in response to the contracting stimulus. (Xs, Ys) 

represents the coordinates of the FOC in screen pixels. Output is represented by brightness.... 55 
Figure 4.9: Outputs from eight different tuned units in response to the expanding stimulus. (Xs, Ys) 

represents the coordinates of the FOE in screen pixels. Output is represented by brightness.... 56 
Figure 4.10: Outputs from eight different tuned units in response to the CW rotating stimulus. (Xs, Ys) 

represents the coordinates of the AOR in screen pixels. Output is represented by brightness. .. 57 
Figure 4.11: Outputs from eight different tuned units in response to the CCW rotating stimulus. (Xs, Ys)  

represents the coordinates of the AOR in screen pixels. Output is represented by brightness. .. 58 
Figure 4.12: Outputs from eight different tuned units in response to the translational stimulus. The direction 

of bar movement of the moving bar stimulus has been changed from 0° to 360° at a step of 15°.

................................................................................................................................................... 59 
Figure 4.13: Theoretical prediction of outputs from eight different tuned units in response to the contracting 

stimulus. (Xs, Ys)  represents the coordinates of the FOC in pixels. Theoretically predicted 

value is represented by brightness.............................................................................................. 60 
Figure 4.14: Theoretical prediction of outputs from eight different tuned units in response to the expanding 

stimulus. (Xs, Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted 

value is represented by brightness.............................................................................................. 60 
Figure 4.15: Theoretical prediction of outputs from eight different tuned units in response to the CW 

rotating stimulus. (Xs, Ys)  represents the coordinates of the AOR in pixels. Theoretically 

predicted value is represented by brightness. ............................................................................. 61 
Figure 4.16: Theoretical prediction of outputs from eight different tuned units in response to the CCW 

rotating stimulus. (Xs, Ys)  represents the coordinates of the AOR in pixels. Theoretically 

predicted value is represented by brightness. ............................................................................. 61 
Figure 4.17: Theoretical prediction of outputs from eight different tuned units in response to the 

translational stimulus. ................................................................................................................ 62 
Figure 4.18: Output from expansion-tuned unit for different Vqua bias settings. (Xs, Ys) represents the 

coordinates of the FOE in screen pixels. Output is represented by brightness........................... 64 



  

   
   
  11 

List of Figures - continued 
 
 
Figure 4.19: Performance vs. Vqua bias plot.................................................................................................. 65 
Figure 4.20: Outputs from expansion-tuned units synthesized using different receptive fields. (Xs, Ys) 

represents the coordinates of the FOE in screen pixels. Output is represented by brightness.... 66 
Figure 4.21: Theoretical predictions from expansion-tuned units synthesized using different receptive 

fields. (Xs, Ys) represents the coordinates of the FOE in pixels. Theoretically predicted value is 

represented by brightness. .......................................................................................................... 67 
Figure 4.22: Performance vs. Receptive field plot. The numbers in receptive field axis represent a square 

region. For example the number 12 represents a receptive field of 12X12 pixels. .................... 67 
Figure 4.23: Outputs from nine units tuned to expanding patterns with the FOE position at the center. (Xs, 

Ys) represents the coordinates of the FOE in screen pixels. Output is represented by brightness.

................................................................................................................................................... 69 
Figure 4.24: Outputs from nine units tuned to nine different FOE positions. (Xs, Ys) represents the 

coordinates of the FOE in screen pixels. Output is represented by brightness........................... 70 
Figure 4.25: Theoretical prediction of outputs from nine units tuned to nine different FOE positions. (Xs, 

Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted value is 

represented by brightness. .......................................................................................................... 71 
Figure 4.26: Mapping of transceiver pixels to the receiver pixels. Black and gray colored pixels are mapped 

to two different receiver pixels to make one tuned to small expansion and the other tuned to 

large expansion. ......................................................................................................................... 72 
Figure 4.27: Output vs. Maximum expanding circle radius plot. Radius is measured in screen pixels. ....... 73 
Figure 4.28: Outputs from expansion-sensitive units implemented on two different receiver pixels. (Xs, Ys) 

represents the coordinates of the FOE in screen pixels. Output is represented by brightness.... 74 
Figure 4.29: Outputs from expansion-tuned unit for different expanding stimulus speed. (Xs, Ys) represents 

the coordinates of the FOE in screen pixels. Output is represented by brightness. .................... 76 
Figure 4.30: Performance vs. expanding stimulus speed plot....................................................................... 76 
Figure 4.31: Outputs from expansion-tuned unit for different expanding stimulus width. (Xs, Ys) represents 

the coordinates of the FOE in screen pixels. Output is represented by brightness. .................... 77 
Figure 4.32: Performance vs. expanding stimulus width plot. Bar width is measured in screen pixels. ...... 78 
Figure 4.33: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus speed. (Xs, Ys) 

represents the coordinates of the AOR in screen pixels. Output is represented by brightness. .. 79 
Figure 4.34: Photograph of the CCW rotating stimulus with an artifact when the AOR is near the central 

region. ........................................................................................................................................ 80 

 



  

   
   
  12 

List of Figures - continued 
 
 
Figure 4.35: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus speed. (Xs, Ys) 

represents the coordinates of the AOR in screen pixels. Output is represented by brightness. .. 80 
Figure 4.36: Performance vs. CCW rotating stimulus speed plot................................................................. 81 
Figure 4.37: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus width. (Xs, Ys) 

represents the coordinates of the AOR in screen pixels. Output is represented by brightness. .. 82 
Figure 4.38: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus width. (Xs, Ys) 

represents the coordinates of the AOR in screen pixels. Output is represented by brightness. .. 82 
Figure 4.39: Performance vs. CCW rotating stimulus width plot. Bar width is measured in screen pixels.. 83 
Figure 6.1: Schematic diagram of the developed multichip motion processor. ............................................ 89 
Figure 6.2: C-element. .................................................................................................................................. 90 
Figure 6.3: C-element4 designed with C-element. ....................................................................................... 90 
Figure 6.4: Delay element............................................................................................................................. 90 
Figure 6.5: 8 bit wide 4 to 1 multiplexer designed with 4 bit wide 2 to 1 multiplexers................................ 91 
 

 



  

   
   
  13 

ABSTRACT 
 
  
 In this thesis a hardware motion processor is presented that is sensitive to 

complex spatial patterns of motion in the visual field; for example, patterns of 

expansion, contraction, and rotation which might be encountered in the self-

motion of a robotic system. Biological motion processing strategies use multiple 

stages of simple parallel processors. However, the extent of pixel-parallel focal 

plane image processing is limited by pixel area and imager fill factor. Addition of 

more processing dramatically reduces the number of pixels on a reasonable-

sized die. An obvious solution to this dilemma is the use of a multiple-chip 

system.  The motion computation is split into more than one chip: a 

photosensitive sender, motion processing transceiver chips and an integrating 

receiver. An asynchronous digital inter-chip communication protocol is used in 

communication between analog VLSI chips designed on neuromorphic 

principles. This multichip motion processor retains the primary advantages of 

focal plane neuromorphic image processing: low power consumption, 

continuous-time operation, and small size. The sender chip detects moving 

edges in the image focused onto it and transmits that information to the 

transceivers. Using the position and timing information of edges detected by the 

sender chip, each pixel of the transceiver chip computes the local one-

dimensional velocity of moving edges and transmits that information to the 

receiver chip. The receiver chip spatially integrates the motion information 

coming from the transceiver chips to produce sensitivity to patterns of optical 

flow. Using EPROMs on the way from sender to transceivers, the visual field is 

rotated such that each identical transceiver chip detects a different direction of 

motion. The information from the transceivers is combined by a routing processor 

in prearranged patterns and transmitted to the receiver chip. This multichip 

neuromorphic motion processor is ideal for sophisticated, real-time onboard 

sensors for autonomous robotics applications. 



  

   
   
  14 

 

1 Introduction 
 
 

1.1 Background 
 

Determination of self-motion is a useful computation for any entity that moves 

within and interacts with its environment. A passive (and biologically relevant) method 

for accomplishing this is by observing patterns of visual motion. When an observer 

moves through its environment, the images of objects move across its retina. This retinal 

image motion, or optic flow, contains important information about the observer’s 

instantaneous rotation and translation and the relative distances of the points in the 

environment. Psychophysical studies show that by using this visual information an 

observer can determine its heading when it moves either in a straight line [1]-[6] or in a 

curved path [7],[8]. To determine curved path motion, the visual system should compute 

both translational and rotational components of the observer’s motion from retinal image 

information. Gibson [9] originally noted that translation of an observer through a 

stationary environment generates a radial pattern of optical flow, in which the observer’s 

heading direction is specified by the focus of expansion (FOE). This is true only for pure 

translational motion. The focus of expansion shifts or ceases to exist for any rotational 

motion of the observer. In general, the singular point location in the visual field contains 

important egomotion information. 

Optic flow is computationally intensive to process in real time and since real time 

autonomous navigation is usually tightly constrained in power consumption, it requires 

power efficient computation of optic flow. Considering this, analog VLSI technology 

used in a neuromorphic approach has a number of advantages over traditional digital 

technology to process optic flow. Due to the use of focal plane computation, in the 

neuromorphic VLSI approach there is no image transfer bottleneck, which is present in 

the conventional approach using a CCD camera together with a DSP processor. To avoid 

temporal aliasing, a high frame rate is maintained in the conventional CCD-DSP 



  

   
   
  15 

approach, which results in high power consumption. Frames from a neuromorphic VLSI 

CMOS imager, on the other hand, are sampled on demand, i.e., the output is data driven. 

This results in low power consumption and temporal aliasing-free computation. Despite 

the benefits of higher fill factor and reprogrammability, conventional real time computer 

vision systems are bulky and run in discrete time. Neuromorphic systems, on the other 

hand, are run in continuous time and are smaller and lighter weight. Also, standard CCD 

cameras do not compensate for local variations in illumination, as do neuromorphic VLSI 

image sensors. 

Pixel parallel focal plane image processing requires larger pixel size as we 

incorporate more and more processing circuitry in the pixel. A CMOS imager performing 

no explicit image processing can be built using only one transistor along with the 

photosensitive element [10]. A few more transistors and capacitors need to be added to 

allow adaptation to the mean light level over a wide range [11]. Focal plane motion 

processing requires even more transistors and capacitors [12]-[14]. If more processing 

such as optical flow field smoothing [15] or discontinuity detection are desired, transistor 

count increases significantly. In redesigning a CMOS imager to be a focal plane motion 

processor, the imager fill factor (percentage of pixel area dedicated for collecting light) 

drops from above 80% to less than 5% while the pixel area grows by a factor of more 

than ten [16]. If an intermediate computation can be communicated off the photosensitive 

chip without losing the advantages of focal plane computation, the effective focal plane 

processing can be extended while retaining practical pixel resolutions.  

Communication between chips must be done without incurring significant delays, 

dramatically increasing power consumption, or introducing temporal aliasing in order to 

retain the advantages of continuous time focal plane image processing in a single chip. 

One way to accomplish this task is to use a digital, asynchronous, low-latency interchip 

communication protocol [16]. Communication between chips takes place only when there 

is a change in visual input, resulting in low power consumption and utilization of 

maximum bus bandwidth. 



  

   
   
  16 

In this work, a multichip motion processor capable of performing egomotion 

computation is built using three different kinds of CMOS VLSI chips which were custom 

designed using neuromorphic principles [17]. This motion processor computes real time 

optical flow using the interchip communication protocol mentioned above. 

 

1.2 Related Work 
 

Volumes of research (see [18] for a review) have been performed in extracting 

self-motion information. Although many algorithms exist for determining the singular 

points of the flow field in complex egomotion, only a few of them are well suited for 

real-time implementation. Fermuller et al. [18]-[20] bounds the location of FOE/AOR. 

Burger et al. [21] determines a 2-D region of possible FOE-locations. Barth et al. [22] 

uses motion parallax to calculate the FOE. Jain [23] uses vector back-projection to 

calculate the FOE. 

Attempts to perform egomotion processing in integrated hardware have only 

begun recently. Indiveri et al. [24] uses the zero crossing in a 1-D array of CMOS 

velocity sensors to detect one component of the focus of expansion. In another chip, the 

sum of a radial array of velocity sensors is used to compute the rate of flow field 

expansion, from which the time-to-contact can be calculated. McQuirk [25] has built a 

CCD-based image processor in which an iterative algorithm is used to locate consistent 

stable points in the image, and the focus of expansion results. Deutschmann et al. [26] 

extend Indiveri et al.’s work to 2-D by summing rows and columns in a 2-D CMOS 

motion sensor array. Software is used to detect zero crossings and find the flow field 

singular point. Higgins et al. [27] compute the position of singular point and self-motion 

information using the sign of optical flow. 

 

The interchip communication protocol used in this work was originally 

envisioned by Mahowald [28] as a circuit analogy to the optic nerve. This protocol was 

used to transmit visual signals out of a silicon retina. For the same purpose, Boahen [29] 



  

   
   
  17 

strengthened and formalized this protocol. In the last few years, several variants of this 

scheme have emerged [30]-[32]. This asynchronous interchip communication protocol 

has been successfully used in neuromorphic sensory processing in recent years. Boahen 

[33] implemented binocular disparity-selective elements by interfacing two silicon retinas 

to three receiver chips. Vernier et al. [34] implemented orientation-selective receptive 

fields by using an asynchronous interface to a silicon retina. Andreou et al. [35] used 

EPROMs for linear or nonlinear address remapping in interchip communication. Kumar 

et al. [36] built an auditory front-end chip with an asynchronous interface for further off-

chip processing. Higgins et al. [16] used this protocol to build three-chip motion 

processors to compute complex visual motion. 

An asynchronous architecture for mapping address events, presented in [37], will 

be useful in making the motion processor, presented in this work, perform more 

efficiently. 

 

1.3 Organization of the Thesis 
 

Chapter 2 presents the background of the multichip neuromorphic motion 

processor. The AER communication protocol is discussed. The block diagram of the 

motion processor is presented. The neuromorphic hardware components used in this 

motion processor along with the algorithm used in computing motion are discussed. 

Chapter 3 discusses how this motion processor can be made sensitive to complex patterns 

of motion. Chapter 4 presents experimental results and comparison of the results with 

theoretical predictions. Finally, chapter 5 concludes the thesis with some 

recommendations for further research. 

 

 

 

 



  

   
   
  18 

2 Hardware Architecture 
 

 

2.1 Background 
 

The number of input/output pins in chips is very limited. For this reason, time 

multiplexing of the communication channels is necessary in multichip systems [38]. 

Usually, pixel activity of vision chips with adaptive silicon retinas [39] is sparse. 

Sequential multiplexing techniques make inefficient use of the communication channel 

bandwidth [40] while transmitting data from these chips. On the other hand, 

asynchronous event-based communication protocol is very efficient for multichip 

neuromorphic systems [41], [42]. For such systems, the Address-Event Representation 

(AER), which has been used in this work for interchip communication, is the most well-

developed method. In this representation, “events” are digital pulses with continuous 

interval. A silicon retina using AER sends digital pulses encoding the position of the 

activated pixel. The temporal pattern of these digital pulses carries the analog information 

of the signal.  

Two digital control lines and several digital address lines are utilized to interface 

a sender chip to a receiver chip in the original form of AER, as shown in Figure 2.1. In 

this protocol, the occurrence of a binary event is transmitted from the sender to the 

receiver in continuous time. A four-phase asynchronous handshake between sender and 

receiver guarantees reliable communication between them. The spatial position of a 

requesting sender pixel is transmitted over the address lines to the receiver chip and the 

event is forwarded to the corresponding receiver pixel. 

Any sender pixel can communicate digital spikes to the corresponding receiver 

pixel using this protocol. Requests can come from any pixel in the array at any instant. 

Therefore, an arbitration scheme on the sender is necessary to serialize simultaneous 



  

   
   
  19 

events onto the single communications bus. Because the asynchronous protocol operates 

so quickly (on nanosecond scales) relative to the timescale of visual stimuli (on 

millisecond scales), the serialization caused by sharing of a single digital bus is not a 

serious problem in sensor applications. Various arbitration schemes exist [28], [31], [43]. 

A binary tree arbiter [44] has been used in this work. This scheme yields a quick decision 

and scales well to large array sizes. The hardware implementation of AER used in this 

chipset has been described in [44]. 

 

REQ

ACK

ADDR

REQ

ACK

ADDR

Sender Receiver

REQ

ACK

ADDR

(a) Communications model

(b) Handshaking protocol  
 
 

Figure 2.1: AER protocol summary. (a) the model for AER transmission: a sender chip 
communicates with a receiver chip via request, acknowledge and address lines. (b) the handshaking 
protocol for transmission using the above control and address lines: a request with a valid address 
leads to an acknowledgment, which in turn leads to falling request and falling acknowledge. 

 

2.2 Multichip System 
 

The hardware architecture of the multichip neuromorphic motion processor is 

described here using a block diagram.  



  

   
   
  20 

 

Figure 2.2: Block diagram of the multichip motion processor developed in this work. 

 

The block diagram of the developed multichip neuromorphic motion processor is 

shown in Figure 2.2. The sender chip detects moving contrast edges in an image focused 

directly upon it. Edge information is transmitted to four transceiver chips via the AER 

bus. These transceiver chips perform motion computation. All transceivers are sensitive 

to the motion in a particular direction. In order to get sensitivity to the motion in four 

different directions by the four identical transceivers, the visual field is rotated using an 

EPROM on the way of the address lines from the sender to each transceiver chip. The 

EPROM can rotate the visual field to any desired direction. Four different EPROMs, 

corresponding to four different transceivers, are performing rotation to four different 

directions, 0°, 90°, 180° and 270°. Because four transceiver chips are present, circuitry is 

necessary to ensure that all four transceiver chips have acknowledged the single sender 

event before the system continues. This circuit is known as a C-element. The information 

from the transceiver chips is combined by a routing processor (PIC) in prearranged 



  

   
   
  21 

patterns and transmitted to the receiver chip. The transceivers communicate with the PIC 

through the request, acknowledge and address lines. The PIC is programmed in such a 

way that when more than one transceiver is making requests then it selects an arbitrary 

transceiver among them. It uses the address bits coming from that transceiver and a tag 

representing the corresponding transceiver when it communicates with the receiver.  

Different mappings have been performed by the PIC for different experiments. 

 

2.3 Hardware Components 
 

Three custom VLSI chips have been designed on neuromorphic principles [17] 

and used in this work to form the multichip motion processor. They are 

i) photosensitive sender 

ii) motion processing transceiver 

iii) integrating receiver 

These chips compute real-time optical flow using the AER communication 

protocol. 

 

2.3.1 Photosensitive Sender Chip 
 

The sender detects moving contrast edges in the image directly focused onto it. 

This chip is the visual front end for all further processing. AER circuitry communicates 

the edge locations from the sender chip to the transceiver chips.  

There is 14 X 12 array of pixels in the core of the sender chip. The layout diagram 

of this chip is shown in Figure 2.3. There are an adaptive photoreceptor [11], a non-linear 

differentiator circuit [45] and interchip communication circuitry in each sender pixel. The 

circuit diagram of a pixel is shown in Figure 2.4.  

The photoreceptor output (Vprout) adapts to the local light intensity on slow time 

scales (a few seconds), providing high gain for transient signals that are centered on the 

adaptation point. It works over a wide range of illumination without a change in bias 



  

   
   
  22 

settings. The adaptive photoreceptor has been designed using only four transistors, a 

photodiode and two explicit capacitors. The transistor M2 has been used as the adaptive 

element. A feedback to the gate of the transistor M1 helps in long term averaging the 

input signal. The inverting amplifier consisting of the transistors M3 and M4 amplifies the 

input signal. The output Vprout has been fed back through M2 and the capacitor divider 

formed from C1 and C2. C2 stores the adaptation state. [11] describes the operation of the 

adaptive photoreceptor in greater detail.  

 

 

 
 

Figure 2.3: Layout of the sender chip fabricated on a MOSIS tiny chip in a 1.2 µµµµm standard CMOS 
process. 

 
The passage of a spatial edge causes a sudden change in local light intensity and 

causes a change in photoreceptor output. The nonlinear differentiator circuit responds 

with a current pulse (Iout) on any sudden change in the photoreceptor output. Therefore 

this combined circuit consisting of adaptive photoreceptor and nonlinear differentiator is 

termed a temporal edge detector (TED). An operational amplifier has been formed using 

the transistors M5-M9 with a bias Vhysbias. The transistors M10-M15 and the capacitors C3-

C5 form a nonlinear feedback configuration. The capacitor divider consisting of C4 and 

Photoreceptor/edge detector array Scanner circuitry 

Communication 
interface 
circuitry 



  

   
   
  23 

C5 sets the feedback voltage gain. The adaptive element M14 is identical to that used in 

the photoreceptor. It helps the V- node of the amplifier adapt slowly to Va. The nonlinear 

differentiator circuit of [45] has been modified in this chip to allow response to both signs 

of derivative. As a result, the TED responds to both bright-to-dark and dark-to-bright 

edges and the density of the produced flow fields increases greatly.  

The Vleak bias sets a current threshold which transistor M16 must overcome to 

lower the voltage Vmem in the communication interface circuit. An event is communicated 

off-chip when Vmem is lowered. The communications interface circuitry of the sender 

pixel is shown in Figure 2.4. Before a request is generated from the pixel, Rpix is 

(inactive) low, Apix is (inactive) high, and Dpix is (inactive) low. When sufficient current 

is integrated on node Vmem that it overcomes the threshold set by Vthr, wired-OR Rpix 

(shared by all pixels in a row) is pulled high. When the row arbiter makes Apix low, Vmem 

gets reset to Vdd and as a result Rpix is released. It also pulls up wired-OR Dpix (shared by 

all pixels in a column). Dpix remains high until Apix becomes (inactive) high. Only the 

change of illumination causes events to be communicated on the bus. This results in a 

very efficient use of bus bandwidth. Arbitration, address encoding, and other interface 

circuitry to support the AER protocol are located in the periphery of the sender chip and 

discussed in [44]. Serial scanner circuitry is also incorporated in this chip to get the raw 

data from the photoreceptor. 

Multiple requests (“a burst of spikes”) from a single sender pixel are created on 

the AER bus during the period of time when the nonlinear differentiator’s current output 

is large enough to overcome the leakage current. Figure 2.5 shows a typical burst from a 

single pixel. Each spike in the burst is arbitrated independently to the bus. Therefore 

bursts from different sender pixels may be found interleaved on the interchip 

communication bus. 



  

   
   
  24 

D
pix

V
d
p

D
V
d
d

D
V
d
d

D
V
d
d

V
rp

D
V
d
d

D
V
d
d

/A
C
K

V
lim

it

V
reco

v D
V
d
d

V
m
em

V
th
r

V
leak A

V
d
d

V
ou
t

V
n
g
ain

V
h
y
s
ou
t

V
h
y
sb
ias

V
g
a
in
2

A
V
d
d

A
V
d
d

A
V
d
d

V
p
rou

t

V
p
rb
ias

A
V
d
d

R
pix

/A
C
K

p h o t o r e c e p t o r
(b) N o n l i n e a r       d i f f e r e n t i a t o r

(c) C
 o m

 m
 u n

 i c a t i o n s       i n t e r f a c e       c i r c u i t

(a) A
 d a p t i v e 

V
p
rout

V
a

C
3

C
4

C
5

M
16

M
17

M
15

M
14

M
13

M
12

M
10

M
9

M
8

M
7

M
6

M
5

D
1

C
1

C
2

M
4 M
3

M
2

M
1

  Iout

M
11

 

Figure 2.4: Sender pixel circuitry. (a) Adaptive photoreceptor, (b) Nonlinear differentiator and (c) 
Communications interface circuit. 



  

   
   
  25 

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

0

1

2

3

4

5

Time (ms)

S
in

gl
e−

pi
xe

l s
pi

ke
 o

ut
pu

t (
V

)

 

Figure 2.5: Sender pixel burst response; this spike train is the response of an individual pixel to a 
passing edge. Since true spike width is approximately 50 ns and spike separation is on the order of 6 
µµµµs, the spike duration has been lengthened to make individual spikes visible. This 1.8 ms burst peaks 
at a spike rate of approximately 160 kHz and encompasses around 200 individual spikes. The 
stimulus edge occurred at approximately t = -15 ms. 

 

2.3.2 Motion Transceiver Chip 
 

This chip calculates one-dimensional (1-D) optical flow vectors from the edge 

information on the AER bus.  

There is a 12 X 12 array of transceiver pixels in the core of the transceiver chip. 

Figure 2.6 shows the layout diagram of this chip. Each transceiver pixel contains the 

communications interface circuitry to communicate both with the sender and with the 

receiver peripheral circuitry and a motion circuit implementing a 1-D version of the ITI 

(Inhibit, Trigger, and Inhibit) motion algorithm. Using only nearest-neighbor 

connectivity, this circuit uses the pulses coming from the interface circuit on the 

receiving side of the transceiver to produce voltages encoding the direction of motion. 

These voltages are then converted into a bi-directional current that drives the interface 

circuit on the sending side. 

 



  

   
   
  26 

 

 

Figure 2.6: Layout of the transceiver chip fabricated on a MOSIS tiny chip in a 1.2µµµµm standard 
CMOS process. 

 
The pulses coming into each 1-D motion sensor represent the order in which the 

corresponding photoreceptors have been crossed by a moving spatial edge. This motion 

sensor suffers from the aperture problem like all local motion sensors. So, this can only 

respond to the component of optical flow normal to the local gradients of light intensity. 

This 1-D computation gives the sign of the projection of the normal flow vector onto the 

sender chip orientation.  

The basis of the ITI motion algorithm is a voltage signal that is pulled high 

(triggered) by one TED of the sender chip and pulled low (inhibited) by a neighboring 

TED of the sender chip. The 1-D ITI motion algorithm is diagrammed in Figure 2.7. A 

moving edge must cross both TEDs of the sender chip in order to be detected. If the 

triggering TED is crossed last, the voltage signal remains high, representing the passing 

of an edge in the preferred direction. If the inhibiting TED is crossed last, the voltage 

goes high briefly and becomes low after the edge passes. The ITI motion circuit was 

inspired by the FTI sensor of Kramer [46]. 

 

 
 

Communications 
interface circuitry 
on the sending 
side 

Array of motion circuits 

Communications 
interface circuitry 
on the receiving 
side 



  

   
   
  27 

MOTION

TED

PIXEL A PIXEL B PIXEL C

T II

VlefVrig t

Iout

TED TED

MOTION

-
 

 

B intensity

A intensity

C intensity

Direction voltage 
            V ri t

Direction voltage
            V le

Output current 
         Iout

 

Figure 2.7: ITI motion algorithm; (a) Block diag
left to right pulls high (triggers) direction voltage
edge subsequently crossing pixel C pulls low 
resulting positive current Iout indicates rightward
leftward motion, resulting in a negative current Io

 
When an edge crosses any pixel of t

to the corresponding pixel in the transc

voltages for both directions. The neighbor

 

C

(a)
τpt time  

ram
s fo
(inh
 mo
ut. 

he 

eive

ing

 
(b)
gh
ft
h

. (b) 
r both
ibits) 
tion. P

sende

r chi

 pixel
t

Simulated traces. An edge crossing from 
 directions Vr and Vl in pixel B. The same 
the incorrect direction voltage Vl. The 
ixels B and A interact similarly to detect 

r chip, the AER pulse communicates 

p, thereby triggering the direction 

 of the sender chip, crossed by the 



  

   
   
  28 

edge next, communicates with the corresponding pixel of the transceiver chip over the 

AER interface and this pulse inhibits the direction voltage in the incorrect direction, 

leaving only the correct direction of motion activated. No signal current flows to or from 

the AER interface circuit to the receiver until one of the two direction voltages is 

inhibited, because the signal current is produced only when there is a difference between 

the two direction voltages. 

A pair of neighboring 1-D pixels communicates with each other using only two 

wires. Inhibiting pulses flow in opposite directions through these wires. Since a pixel has 

two neighbors each 1-D pixel is connected to its neighbors through a total of four wires. 

Two of them are entering and the other two are leaving. 

The communications interface circuit on the receiving side of the transceiver 

shown in Figure 2.8 is much simpler than the interface circuit on the sending side. When 

Xsel and Ysel are both active high, Rin becomes low and Vrmem grows in magnitude 

depending on  Vqua and Vtau bias settings. CMOS inverters are added to digitize the 

voltage level and generate Vout and Voutbar for use in the motion circuit. 

Figure 2.8 also shows the schematic diagram of the ITI motion circuit together 

with the communications interface circuit on the sending and the receiving side. The 

voltage signal Voutbar results from the local TED of the sender chip and pulls up (triggers) 

both direction voltages Vl and Vr to Vdd. The signals Vleft and Vright are the signals Vout 

coming from neighboring pixels to the left and right respectively, and are used to pull 

down (inhibit) the direction voltages. The capacitors are linearly discharged through the 

transistors with constant gate bias Vleak. This determines the persistence time τpt of the 

motion vectors. The current output circuit shown in Figure 2.8 computes the difference 

between the two direction voltages. This current is the input to the AER interface circuit 

of the transceiver on the sending side, which operates in the same way as the 

communications interface circuit of the sender chip described earlier. If one of the two 

direction voltages Vl and Vr is high then the sign of this current is determined by which 

of them is high. Only a small mismatch current is produced when both the direction 

voltages are high. The voltage Vlim sets the magnitude of the current. 



  

   
   
  29 

DV
d
d

DV
d
d

V
rp

DV
d
d

DV
d
d

/A
C
K

Vm
em

DV
d
d

V
lim

DV
d
d

V
to
p

DV
d
d

PixA
ckP

U

Vrig
htV

r

V
l

V
l

V
outb

ar

DV
d
d

Vleak

V
r

V
outb

ar

V
left

Dvd
d

Dvd
d

Dvd
d

V
outb

ar

V
o
ut

Vrm
em

V
tau

Vq
ua

PixA
ck DV

d
d

DV
d
d

R
in

X
sel

Y
sel

PixA
ckP

U

DV
d
d

DV
d
d

V
lim

V
r

V
l

Vspo
n

V
thr

R
p
ix

/A
C
K

V
d
p

D
p
i x

DV
d
d

V
offset

V
o
ut

l e f t     a n d     r i g h t )

Io
ut

o u t p u t     c i r c u i t

(c) C
 u r r e n t

(b) M
 o t i o n      c i r c u i t

r e c e i v i n g     s i d
 e

c i r c u i t    o n    t h
 e

i n t e r f a c
 e

o n     t h e
      s e n d i n g     s i d

 e

(d
) C

 o m
 m
 u
 n i c a t i o

 n s      i n t e r f a c e      c i r c u i t

(a) C
 o m

 m
 u n

 i c a t i o n s

M
2

M
1

Integra
tor

(t o    o t h e r     p i x e l s

 
Figure 2.8: Transceiver pixel circuits. (a) Communications interface circuit on the receiving side. (b) 
Motion circuit. The local TED signal Voutbar, coming through AER interface circuit, is used to pull 
high the direction voltages Vr and Vl when an edge passes. Vleft and Vright are the signals Vout coming 
from neighboring pixels, and are used to pull the direction voltages low. The bias Vleak sets the 
persistence time ττττpt of the motion signal. (c) Current output circuit. The state of the direction voltages 
determines the sign of the bi-directional output current Iout. Vlim sets its magnitude. (d) 
Communications interface circuit on the sending side. 



  

   
   
  30 

2.3.3 Integrating Receiver Chip  
 

There is a 27 X 29 array of receiver pixels in the core of the receiver chip. Figure 

2.9 shows the layout diagram of this chip. Along with the communications interface 

circuit each receiver pixel contains a circuit to integrate spikes received from the 

interface circuitry. This circuit is shown in Figure 2.10 together with the communications 

interface circuit. Address decoding and interface circuitry to support the protocol are 

placed in the periphery and are discussed in [44]. A serial scanner has been incorporated 

in this chip for readout of the integrated output. 

When Xsel and Ysel are both active high, Rpix becomes low and Vmem grows in 

magnitude depending on  Vqua and Vtau bias settings. 

 

 
 

Figure 2.9: Layout of the receiver chip fabricated on a MOSIS tiny chip in a 1.2µµµµm standard CMOS 
process. 

 
Referring to Figure 2.10, each spike coming from the AER communications 

interface circuit to a particular receiver pixel pulls down Rpix of that pixel which in turn 

makes a charging current flowing through transistor M1 to charge the output capacitor. 

Vqua sets the magnitude of the charging current. There is a charging current whenever a 

spike comes in. The constant discharging current is set by Vtau. There is a particular spike 

frequency f0 for which the charging and discharging current are the same on average 

Scanner circuitry 

Communications 
interface circuitry 

Pixel array 



  

   
   
  31 

keeping Vmem at a steady state value. If the frequency is just above this equilibrium value 

Vmem does not discharge fully, resulting in a build up of voltage on the capacitor. If the 

frequency is just below this equilibrium value Vmem does not get charged as much as it 

gets discharged, making the voltage on the capacitor drop. The final value of the 

capacitor voltage depends on the number of spikes which came in. For an infinite number 

of spikes the voltage vs. frequency curve shows a sharp rise from VoL to VoH. However, 

for a smaller number of spikes this curve is smoother because for the frequencies near f0 

sufficient charge is not accumulated/discharged to reach the upper or lower voltage 

limits. The spike width, and thus the charge delivered, is almost the same for each spike. 

Figure 2.11 shows a sketch of Vmem versus frequency for different number of spikes. The 

equilibrium frequency can be calculated as follows. 
 

 
 

Figure 2.10: Receiver pixel consisting of an integrating circuit together with the communications 
interface circuit. 

 

If the quantity of charge transferred to the capacitor per spike is Q, then the 

average charging current is fQ, where f = spike frequency. If the constant discharging 

current is Iτ, then at the steady state Vmem condition, Iτ = f0Q. So the equilibrium 

frequency f0=Iτ/Q. As Iτ is roughly proportional to eVτ and Q is roughly proportional to 

eVqua, f0 can be approximated as f0 = eVτ/TeVqua, where T is the spike width. f0 can thus be 



  

   
   
  32 

set by adjusting the relative setting of the Vqua and Vτ biases. The absolute Vτ setting is 

also important in determining the decay time constant of the integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Vmem vs. frequency sketch. 

 
 

Referring to the plot for a small number of spikes in Figure 2.11, we don’t get any 

signal output for spike frequencies less than fl. This is the lower limit of the spike 

frequency of this motion processor to have signal output. Output varies with frequency in 

the frequency range from fl to fh. fh is the threshold frequency above which the output 

does not vary. So, each receiver pixel effectively performs a thresholding operation. 

 

Frequency, f 

Vmem 

VoL

VoH

f0 

A few no. of spikes 

Infinite no. of spikes 

fl fh 



  

   
   
  33 

 

3 Synthesis of Complex Motion Units 
 

 

3.1 Introduction 
 

The four transceivers perform motion computation with the mapped address field 

received from four corresponding EPROMs. The combination of a transceiver and 

corresponding EPROM is termed a channel hereafter. So, we have four channels sensitive 

to four different directions of motion as shown in Figure 3.1. Downward motion is 

considered the reference 0°, because this is the preferred direction of motion for the 

motion chip without any rotation of address field. A channel is sensitive if there is any 

component of motion in its preferred direction. To accomplish the goal of this project, i.e. 

to build a motion processor with the ability to detect complex patterns of motion such as 

expansion, contraction and rotation, different parts of the flow field from different 

channels are combined. 
 
 
 
 
 
 
 
 
 

Figure 3.1: Four channels sensitive to four different direction of motion: (a) 0°°°°, (b) 90°°°°, (c) 180°°°° and 
(d) 270°°°°. Downward motion is considered the reference 0°°°°, because this is the preferred direction of 
motion for the motion chip without any rotation of address field. Rotations are performed clock-wise. 
For example, 90°°°° rotation makes leftward motion and so on. 

 

3.2 Expansion-sensitive Unit 
 

To make the motion processor sensitive to expanding patterns with the focus of 

expansion at the center of the field of view, the leading half of the flow fields from all 

(a) (b) (c) (d) 



  

   
   
  34 

four channels are combined as shown in Figure 3.2. As a result of this combination, the 

motion processor becomes sensitive to the resultant flow field as shown in Figure 3.3, 

which has been obtained by adding the flow fields of Figure 3.2. The transceiver core has 

12 X 12 pixels. In practical implementation, the leading 6 X 12 pixels are combined to 

have the required flow field combination as shown in Figure 3.4 where the pixels to be 

combined are colored black. An arrow is drawn at the top of the pixel representation of 

each channel to show its preferred direction. The reason behind this combination of 

pixels to implement an expansion-sensitive unit with FOE at the center of the visual field 

is obvious from the following analysis. 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
180 degree translation-sensitive channel

Xs

Ys

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
0 degree translation-sensitive channel

Xs

Ys

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
270 degree translation-sensitive channel

Xs

Ys

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
90 degree translation-sensitive channel

Xs

Ys

 
Figure 3.2: Flow fields from each channel are shown that are to be combined to synthesize an 
expansion-sensitive unit with the FOE at the center of the visual field. 

 
Summing the responses of the black colored pixels (Figure 3.4) from only one of 

the four channels at a time gives rise to the output as shown in Figure 3.5 in response to 

the expanding stimulus for varying FOE positions. In calculating theoretical values, it is 

assumed that any pixel gives rise to a response 1 if it finds any component of the stimulus 

in the preferred direction. It contributes a value 0 otherwise. The contributions from all 

the pixels have been added to get the final values of Figure 3.5. Linear addition of these 



  

   
   
  35 

plots results in the plot shown in Figure 3.6 that is exactly the response of an expansion-

tuned unit (with the FOE at the center of the visual field) to the expanding stimulus for 

varying FOE positions showing the maximum response for the FOE position at the center 

of the field of view. All four active channels give rise to this plot in Figure 3.6. So, the 

combination of pixels mentioned above makes the motion processor sensitive to the 

expanding patterns with FOE at the center of the visual field. 

 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
Resultant flow field to which the expansion-tuned unit becomes sensitive

Xs

Ys

 
 

Figure 3.3: Resultant flow field to which the unit becomes sensitive as a result of the flow field 
combination specified in Figure 3.2.  

 

 

 

 

 

 

 
 

Figure 3.4: The pixels from each transceiver to be combined to make the processor sensitive to 
expanding patterns (with the FOE at the center of the visual field) are shown in black. 

 

(a) (b) (c) (d) 



  

   
   
  36 

0

0.05

0.1

0.15

0.2

0.25
270 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5
0

0.05

0.1

0.15

0.2

0.25
180 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5

0

0.05

0.1

0.15

0.2

0.25
90 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5
0

0.05

0.1

0.15

0.2

0.25
0 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5

 
 

Figure 3.5: Theoretical prediction from individual channels in response to expanding patterns. (Xs, 
Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted value is represented by 
brightness. 

 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Expansion-sensitive unit

Xs

Ys

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 
Figure 3.6: Theoretical prediction from expansion-sensitive unit with FOE at the center of the field of 
view in response to expanding patterns. (Xs, Ys)  represents the coordinates of the FOE in pixels. 
Theoretically predicted value is represented by brightness. 

 

3.3 Contraction-sensitive Unit 
 

In order to make the processor sensitive to contracting patterns with the focus of 

contraction at the center of the field of view, the trailing half of the flow fields from all 

the channels have to be combined. As a result of this combination, the motion processor 

becomes sensitive to the resultant flow field as shown in Figure 3.7, which has been 

obtained by adding the component flow fields. The combination of the pixels of the 



  

   
   
  37 

transceivers in practical implementation is shown in Figure 3.8 where the pixels to be 

combined are shown in black color.  

 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
Resultant flow field to which the contraction-tuned unit becomes sensitive

Xs

Ys

 
 

Figure 3.7: Resultant flow field to which the unit becomes sensitive as a result of the specified flow 
field combination for contraction. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.8: The pixels from each transceiver to be combined to make the processor sensitive to 
contracting patterns are shown in black. 

 
Combining the black colored pixels (Figure 3.8) from only one of the four 

channels at a time gives rise to the output as shown in Figure 3.9 in response to the 

contracting stimulus for varying FOC positions. Linear addition of these plots results in 

the same plot shown in Figure 3.6 that is exactly the response of a contraction-sensitive 

unit (with the FOC at the center of the visual field) to the contracting stimulus for varying 

FOC positions showing the maximum response for the FOC position at the center of the 

field of view. All four active channels give rise to this plot in Figure 3.6. So, the 

(a) (b) (c) (d) 



  

   
   
  38 

combination of pixels mentioned above makes the motion processor sensitive to the 

contracting patterns with FOC at the center of the visual field. 

 

0

0.05

0.1

0.15

0.2

0.25
270 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5
0

0.05

0.1

0.15

0.2

0.25
180 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5

0

0.05

0.1

0.15

0.2

0.25
90 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5
0

0.05

0.1

0.15

0.2

0.25
0 degree translation-sensitive channel

Xs

Ys

-5 0 5

-5

0

5

 
Figure 3.9: Theoretical prediction from individual channels in response to contracting patterns. (Xs, 
Ys)  represents the coordinates of the FOC in pixels. Theoretically predicted value is represented by 
brightness. 

3.4 Rotation-sensitive Units 
 

To make the motion processor sensitive to CCW and CW rotating patterns with 

the axis of rotation at the center of the visual field the right and left half of the flow fields 

from all the channels should be combined respectively. As a result of these combinations, 

the motion processor becomes sensitive to the resultant flow fields as shown in Figure 

3.10 and Figure 3.11 respectively which have been obtained by adding the respective 

component flow fields. The required pixels of the transceivers to combine in practical 

implementation of the CCW and CW rotation-tuned units are shown in black color in 

Figure 3.12 and Figure 3.13 respectively. The theoretical prediction from CCW/CW 

rotation-sensitive units with AOR at the center of the field of view in response to 

CCW/CW rotating patterns is also same as that shown in Figure 3.6. 

 



  

   
   
  39 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
Resultant flow field to which the CCW rotation-tuned unit becomes sensitive

Xs

Ys

 
Figure 3.10: Resultant flow field to which the unit becomes sensitive as a result of the specified flow 
field combination for CCW rotation. 

 
Although the four units above (expansion, contraction, CCW rotation and CW 

rotation) have been implemented individually all of them can be implemented 

simultaneously by combining the appropriate transceiver pixels and mapping them to 

four different receiver pixels simultaneously. In fact, in this mapping every transceiver 

pixel is used exactly twice, i.e. each transceiver pixel is mapped to exactly two receiver 

pixels. For each request coming from a transceiver, the routing processor sends two 

requests to the receiver. 

 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
Resultant flow field to which the CW rotation-tuned unit becomes sensitive

Xs

Ys

 
 

Figure 3.11: Resultant flow field to which the unit becomes sensitive as a result of the specified flow 
field combination for CW rotation. 



  

   
   
  40 

 
 

 
 
 
 
 
 
 

 

Figure 3.12: The pixels from each transceiver to be combined to make the processor sensitive to 
CCW rotating patterns are shown in black. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.13: The pixels from each transceiver to be combined to make the processor sensitive to CW 
rotating patterns are shown in black. 

 

3.5 Varying Receptive Field 
 

The receptive field of a unit is the portion of the visual field used in synthesizing 

that unit. In order to implement the desired patterns of connection, the routing processor 

(PIC) used in this motion processor sends, in general, a number of requests to the receiver 

for each request coming from any transceiver. The next incoming request can be 

processed only after all the requests to the receiver (generated by the PIC for the earlier 

transceiver request) have been acknowledged. This slows the system down. This 

overhead can be reduced by using a partial receptive field of the system instead of the full 

(a) (b) (c) (d) 

(a) (b) (c) (d) 



  

   
   
  41 

receptive field. Using partial receptive fields allows the routing processor to make less 

requests to perform the same tasks in many applications. 

In previous sections, full receptive fields of the chips have been used to derive the 

units sensitive to expansion, contraction, CCW rotation and CW rotation with the 

FOE/FOC/AOR at the center of the field of view, because the entire half of the pixels of 

each transceiver chip is combined to synthesize them. It is also possible to use reduced 

receptive field or, in other words, to combine less than the entire half of the pixels to 

synthesize these units. For example, we can combine 6 X 3 pixels from each transceiver 

as shown in Figure 3.14 to have a receptive field of 6 X 6 pixels to synthesize expansion-

tuned unit with FOE at the center of the visual field. Some performance will obviously be 

lost in these combinations. Figure 3.15 shows the theoretical prediction of output from 

this expansion-tuned unit in response to the expanding stimulus for varying positions of 

FOE over the field of view of the chip. This plot can be compared to Figure 3.6 to see the 

performance loss in using the partial receptive field. 

 
 
 
 
 
 
 
 

 

 

Figure 3.14: The pixels from each transceiver to be combined to make the processor sensitive to 
expanding patterns using partial receptive field (6X6 in this case) are shown in black. 

 
Although we are losing some performance in using the partial receptive field, the 

motion processor can be made to perform more tasks by using the unused pixels of the 

reduced receptive field implementation. For example, we can also combine the unused 

pixels from each transceiver of Figure 3.14 to perform some more tasks. As shown in 

Figure 3.16, by mapping the black colored pixels to one receiver pixel and the gray 

colored pixels to another, the motion processor can be made sensitive to large and small 

expanding fields at the same time. Figure 3.17 shows the theoretical prediction from the 

(a) (b) (c) (d) 



  

   
   
  42 

unit tuned to large expanding fields while Figure 3.15 is the theoretical prediction from 

the unit tuned to small expanding fields. 

0.14

0.16

0.18

0.2

0.22

0.24

Partial receptive field (6X6 pixels)

Xs

Ys

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 
Figure 3.15: Theoretical prediction from expansion-tuned unit using partial receptive field (6X6 in 
this case) in response to expanding patterns. (Xs, Ys)  represents the coordinates of the FOE in pixels. 
Theoretically predicted value is represented by brightness. 

 

 

 

 

 

 

 

Figure 3.16: The pixels from each transceiver to be combined to make the processor sensitive to large 
and small expanding fields simultaneously are shown in black and gray color respectively. 

 

3.6 Off-Centered FOE Tuning 
 

The motion processor can also be made sensitive to expanding patterns with FOE 

not centered in the visual field. Figure 3.18 shows the pixels to be combined to make a 

unit sensitive to expanding patterns with an off-center FOE. Figure 3.19 shows the 

corresponding theoretical prediction. 

(a) (b) (c) (d) 



  

   
   
  43 

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Unit tuned to large expanding field

Xs
Ys

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 

Figure 3.17: Theoretical prediction from expansion-sensitive unit tuned to large expanding field. (Xs, 
Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted value is represented by 
brightness. 

 
 

 

 

 

 

 

Figure 3.18: The pixels from each transceiver to be combined to make the processor sensitive to 
expanding patterns with an off-centered FOE are shown in black. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tuned to expanding pattern with off-centered FOE

Xs

Ys

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 

Figure 3.19: Theoretical prediction from expansion-sensitive unit tuned to expanding patterns with 
an off-centered FOE. (Xs, Ys)  represents the coordinates of the FOE in pixels. Theoretically 
predicted value is represented by brightness. 

(a) (b) (c) (d) 



  

   
   
  44 

Figure 3.20 shows the pixels to be combined from each transceiver with different 

symbols to make the motion processor sensitive to expanding patterns with four different 

positions of FOE simultaneously. This implementation utilizes the benefit from using the 

reduced receptive field. Using the reduced receptive field, we get four units 

simultaneously tuned to expanding patterns with four different FOE positions without 

slowing down the system from the implementation of Figure 3.18. The pixels of four 

different symbols from each transceiver are mapped to four different pixels of the 

receiver to have four units tuned to expanding patterns with four different positions of 

FOE. Figure 3.21 shows the theoretical predictions for these four units. To make the 

system tuned to four FOE positions simultaneously using the mapping like Figure 3.18, 

four requests must go out of the PIC for each input request, resulting in a slower 

response. In the reduced receptive field implementation of these simultaneous tuned 

units, only one request goes out of the PIC for each input request. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: The pixels from each transceiver to be combined to make the processor sensitive to 
expanding patterns with different positions of FOE simultaneously are shown with different symbols. 

 



  

   
   
  45 

0.14
0.16

0.18

0.2
0.22

0.24

FOE position 4

Xs
Ys

-5 0 5

-5

0

50.14
0.16

0.18

0.2
0.22

0.24

FOE position 3

Xs

Ys

-5 0 5

-5

0

5

0.14
0.16

0.18
0.2

0.22
0.24

FOE position 2

Xs

Ys

-5 0 5

-5

0

50.14
0.16

0.18
0.2

0.22
0.24

FOE position 1

Xs

Ys
-5 0 5

-5

0

5

 
 

Figure 3.21: Theoretical outputs from four expansion-sensitive units tuned to four different positions 
of FOE. (Xs, Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted value is 
represented by brightness. 

 

3.7 Larger FOE Region 
 

The heading direction of an observer is specified by the FOE only for a purely 

translational motion of the observer [9]. Slight deviation from pure translational motion 

shifts the position of the singular point. Sensitivity to the expanding patterns with a larger 

region of FOE might be helpful in extracting motion information in such cases. 

All the expansion-sensitive units discussed so far are sensitive to expanding 

patterns with FOE within a very small region. The theoretical predictions having sharp 

peak drawn so far show this tiny region.  

For the expansion-sensitive unit tuned to expanding patterns with FOE at the 

central region of the visual field, the distances between the four central pixels determine 

this small central region. These units can be made sensitive to expanding patterns with a 

larger region of FOE positions by combining less or more than the half of the pixels from 

each transceiver as shown in Figure 3.22 and Figure 3.23 respectively. Figure 3.24 and 



  

   
   
  46 

Figure 3.25 show the theoretical predictions from the units corresponding to the mapping 

in Figure 3.22 and Figure 3.23 respectively in response to expanding stimulus with 

varying FOE positions. 

 

 

 

 

 

 

 

 

Figure 3.22: The pixels from each transceiver (less than the entire half) to be combined to make the 
processor sensitive to expanding patterns with a larger region of FOE position are shown in black. 

 

 

 

 

 

 

 

 

 

Figure 3.23: The pixels from each transceiver (more than the entire half) to be combined to make the 
processor sensitive to expanding patterns with a larger region of FOE position are shown in black. 

 
 

(a) (b) (c) (d) 

(a) (b) (c) (d) 



  

   
   
  47 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Tuned to larger region of FOE

Xs

Ys

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 
 

Figure 3.24: Output from expansion-tuned unit tuned to expanding patterns with larger region of 
FOE (corresponding to the mapping in Figure 3.22). (Xs, Ys)  represents the coordinates of the FOE 
in pixels. Theoretically predicted value is represented by brightness. 

 
 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Tuned to larger region of FOE

Xs

Ys

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

 
Figure 3.25: Output from expansion-tuned unit tuned to expanding patterns with larger region of 
FOE (corresponding to the mapping in Figure 3.23). (Xs, Ys)  represents the coordinates of the FOE 
in pixels. Theoretically predicted value is represented by brightness. 



  

   
   
  48 

 

4 Experimental results 
 

 

4.1 Introduction 
 

This chapter details all the experiments performed on the developed multichip 

motion processor. A metric (“performance”) is introduced to help compare different 

results. Experimental results are compared with the theoretical predictions where 

appropriate.  The cause of any difference between the experimental result and the 

theoretical prediction is discussed. The circuit conditions have been kept the same 

whenever the results of different experiments have been compared. The experimental 

setup is presented before all the experiments are described. 
 

4.2 Experimental Setup 
 

Figure 4.1 shows the experimental setup. The multichip motion processor has 

been built on a wire-wrap board. While taking data, the board has been kept upright using 

a vise. An LCD monitor is placed in front of the board for low flicker stimulation. The 

relative position of the board and the LCD monitor has been calibrated, so that the 

photosensitive sender chip can see the full view of the stimulus on the LCD monitor. The 

scanning circuits of the chips are connected to the computer through an interface card. A 

photograph of this setup is shown in Figure 4.2. 

Different kinds of stimuli have been presented on the LCD monitor for different 

experiments. Expanding and contracting patterns have been generated using a circle, 

approximated by a polygon with twenty sides for speed of graphics. A photograph of the 

expanding/contracting circle is shown in Figure 4.3. CW and CCW rotating wagon wheel 

patterns have four spokes as shown in Figure 4.4. A square wave grating moving in a 

fixed direction is the presented moving bar stimulus, the photograph of which is shown in 



  

   
   
  49 

Figure 4.5. The direction of bar movement is specified in the stimulus generating 

program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Experimental setup. 

 

 
Figure 4.2: Photograph of the experimental setup. 

Cable 
connecting 
the motion 
processor 
and CPU

LCD monitor 

Motion 
processor 
implemented on 
a wire-wrap 
board

Sender chip 
seeing the 
stimulus 

CPU 

Screen 

Cable 
connecting 
CPU and 
monitor 



  

   
   
  50 

 
 

Figure 4.3: Photograph of the expanding/contracting stimulus. 

 
 
 

 
 

Figure 4.4: Photograph of the CCW/CW rotating stimulus. 

 
 
 

 
 

Figure 4.5: Photograph of the moving bar stimulus. 



  

   
   
  51 

4.3 Power Consumption 
 

The developed multichip motion processor consumes a power of 1.76 Watts on 

average. The microcontroller and the oscillator to generate its clock consume 208 mW on 

average. The average power consumption by the neuromorphic VLSI chips is about 5 

mW each [16]. Some power is consumed by the supporting digital chips, i.e. inverters, 

NOR gates, NAND gates, SR flip-flops and multiplexers. The rest of the power is 

consumed by the bias circuits, i.e. voltage regulators, biasing potentiometers and buffers. 

 

4.4 Performance 
 

For most of the experiments of this chapter, output has been recorded for 33X33 

screen positions of FOE/FOC/AOR of expanding/contracting/rotating stimuli. In these 

experiments, performance is calculated as a ratio of the average output over the central 

17X17 region of FOE/FOC/AOR to the average output over the entire 33X33 region of 

FOE/FOC/AOR. 

Because there are 11 inter-pixel regions in each row or column of pixels in the 

motion chip, the field of view of the chip has been considered a 13X13 chip pixel region 

(including the outside regions of the chip) in calculating theoretical values. Theoretical 

performance is calculated as a ratio of the average theoretical output value for the central 

region of FOE/FOC/AOR over the chip to the average theoretical output value for the 

entire 13X13 region of FOE/FOC/AOR over the chip. The performance varies depending 

on the portion of the entire region considered as the central region, i.e. 1X1, 3X3, 5X5, 

7X7, 9X9 and 11X11. Figure 4.6 shows the performance of an expansion-sensitive unit 

with FOE at the center of the visual field in response to the expanding patterns with 

varying FOE positions. It clearly shows that the performance depends on the area 

considered as the central region. Clearly, the narrower the central region is defined, the 

higher the performance is. The narrowest central region gives the theoretical value of the 

performance of about 1.37, which will be considered the standard performance when 

practical performances are discussed. 



  

   
   
  52 

0 2 4 6 8 10 12
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
Performance vs. Central region considered

Central region considered

P
er

fo
rm

an
ce

 
 

Figure 4.6: Theoretical performance as a function of the considered central region. 

 

4.5 Experiment 1: Simultaneous tuning to expansion, 
contraction, CCW and CW rotation and four directions of 
translational motion 

 

4.5.1 Setup 
 

To perform this experiment, the PIC has been programmed to map the pixels from 

each transceiver to eight different receiver pixels to make the circuit sensitive to 

expanding patterns with the FOE at the center of the visual field of the chip, contracting 

patterns with the FOC at the center of the visual field of the chip, CCW and CW rotating 

patterns with the AOR at the center of the visual field of the chip, and patterns of 

translation motion in four different directions: 0°, 90°, 180° and 270°, all simultaneously. 

Therefore, the motion processor has been made to detect any of the eight different kinds 

of motion whenever they appear in front of the sender chip.  The PIC combines different 

parts of different transceivers as described in Chapter 3 to make the circuit sensitive to 

expansion, contraction, and CCW and CW rotation. The information from each entire 

transceiver has been combined to make the circuit sensitive to four directions of 

translation motion. These eight different mappings are performed by the PIC and the 

information is passed to eight different pixels of the integrating receiver, one pixel per 



  

   
   
  53 

tuning. The PIC makes exactly four requests to the receiver for every request it receives 

from any transceiver. Two requests are required to implement four complex units 

simultaneously as mentioned in section 3.4. One more request is necessary to implement 

the units tuned to four directions of translational motion. But this difference in the 

number of requests (spike frequencies) to the receiver pixels corresponding to four 

complex units and four translational units require different receiver (Vqua) bias settings 

for complex and translational units. This problem has been resolved by sending an 

additional request to the receiver pixels corresponding to translational units. This makes 

the spike frequencies same for complex units and translational units and thus makes the 

system work for a single receiver bias setting. 

A few bursts of these four requests going out of the PIC, viewed on the logic 

analyzer, are shown in Figure 4.7. The time span between sending the last request of a 

burst to the first request of the next burst is significant due to the execution of large 

number of PIC instructions. The same amount of time is required between two successive 

requests if the PIC would be sending one request out for each input request. The time 

spans between the requests of a burst are much smaller because they are generated one 

after another without executing other PIC instructions in between. Therefore, sending 

four requests out for each input request does not make the system four times slower. The 

slowdown is much less. For simplicity, we will term this as 4 to 1 slowdown hereafter. 

 

 
 

Figure 4.7: Bursts of requests coming out of the PIC.  



  

   
   
  54 

Five different kinds of stimuli have been presented in this experiment. Expanding, 

contracting, CCW rotating and CW rotating stimuli have been presented and output has 

been recorded from each of the eight different tuned units for 33X33 screen positions of 

FOE/FOC/AOR over the visual field of the chip. Moving bar stimuli have been presented 

and output has been recorded from each of the eight different tuned units for different 

angles of the direction of moving bars varied at a step of 15°. The scanner circuit of the 

receiver chip is clocked as the outputs are recorded from eight pixels of the chip. 
 

4.5.2 Result 
 

Figure 4.8 shows the gray scale plots of outputs from eight different tuned units in 

response to the contracting stimulus. Similar plots are shown in Figure 4.9, Figure 4.10 

and Figure 4.11 for expanding, CW rotating and CCW rotating stimuli respectively. Polar 

plots of outputs from all eight units in response to the moving bar stimulus are shown in 

Figure 4.12. 

The gray scale plots show that the contraction-tuned unit is sensitive only to the 

contracting stimulus with the FOC at the center of the field of view, the expansion-tuned 

unit is sensitive only to the expanding stimulus with the FOE at the center of the field of 

view, the CW rotation-tuned unit is sensitive only to the CW rotating stimulus with the 

AOR at the center of the field of view and the CCW rotation-tuned unit is sensitive only 

to the CCW rotating stimulus with the AOR at the center of the field of view. The 

translation-sensitive units also respond to these four stimuli for some positions of 

FOC/FOE/AOR, because for these positions of FOC/FOE/AOR the stimuli present 

translation motions to the chip. For example, for an expanding stimulus when the FOE is 

outside the field of view of the chip on the left, the right-sensitive translation unit 

responds because the stimulus looks like full field rightward motion. The polar plots 

show that the translation-tuned units also detect the right direction of motion. Obviously, 

all the output plots differ from their theoretical counterparts shown in Figure 4.13, Figure 

4.14, Figure 4.15, Figure 4.16 and Figure 4.17 respectively for valid reasons that are 

discussed below. 



  

   
   
  55 

0

1

2

3

4
Contraction-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
Expansion-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
CW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
CCW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 

0

1

2

3

4
0 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
90 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
180 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
270 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 
Figure 4.8: Outputs from eight different tuned units in response to the contracting stimulus. (Xs, Ys) 
represents the coordinates of the FOC in screen pixels. Output is represented by brightness. 



  

   
   
  56 

1

2

3

4

Expansion-sensitive unit

Xs

Ys

-50 0 50

-50

0

501

2

3

4

Contraction-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

1

2

3

4

CW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50 1

2

3

4

CCW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 

1

2

3

4

0 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50 1

2

3

4

90 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

1

2

3

4

180 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50 1

2

3

4

270 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 
Figure 4.9: Outputs from eight different tuned units in response to the expanding stimulus. (Xs, Ys) 
represents the coordinates of the FOE in screen pixels. Output is represented by brightness. 



  

   
   
  57 

0

1

2

3

4

CW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4

Expansion-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4

Contraction-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4

CCW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 

0

1

2

3

4

0 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4

90 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4

180 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4

270 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 
Figure 4.10: Outputs from eight different tuned units in response to the CW rotating stimulus. (Xs, 
Ys) represents the coordinates of the AOR in screen pixels. Output is represented by brightness. 



  

   
   
  58 

0

1

2

3

4
CCW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
Expansion-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
CW rotation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
Contraction-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 

0

1

2

3

4
0 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
90 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
180 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
270 degree translation-sensitive unit

Xs

Ys

-50 0 50

-50

0

50

 
Figure 4.11: Outputs from eight different tuned units in response to the CCW rotating stimulus. (Xs, 
Ys)  represents the coordinates of the AOR in screen pixels. Output is represented by brightness. 



  

   
   
  59 

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

Contraction-sensitive unit

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

Expansion-sensitive unit

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

CW rotation-sensitive unit

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

CCW rotation-sensitive unit

 

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

90 degree translation-sensitive unit

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

180 degree translation-sensitive unit

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

270 degree translation-sensitive unit

  10

  20

30

210

60

240

90

270

120

300

150

330

180 0

0 degree translation-sensitive unit

 
 

Figure 4.12: Outputs from eight different tuned units in response to the translational stimulus. The 
direction of bar movement of the moving bar stimulus has been changed from 0°°°° to 360°°°° at a step of 
15°°°°.  



  

   
   
  60 

 
 
 
 

0.5

0.6

0.7

0.8

0.9

1
Contraction-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
Expansion-sensitive unit

Xs
Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
CW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
CCW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
0 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
90 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
180 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
270 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

 
 

Figure 4.13: Theoretical prediction of outputs from eight different tuned units in response to the 
contracting stimulus. (Xs, Ys)  represents the coordinates of the FOC in pixels. Theoretically 
predicted value is represented by brightness. 

 
 
 
 
 

0.5

0.6

0.7

0.8

0.9

1
Expansion-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
Contraction-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
CW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
CCW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
0 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
90 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
180 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
270 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

 
 

Figure 4.14: Theoretical prediction of outputs from eight different tuned units in response to the 
expanding stimulus. (Xs, Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted 
value is represented by brightness. 

 
 
 



  

   
   
  61 

 
 
 

0.5

0.6

0.7

0.8

0.9

1
CW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
Expansion-sensitive unit

Xs
Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
Contraction-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
CCW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
0 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
90 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
180 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
270 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

 
 

Figure 4.15: Theoretical prediction of outputs from eight different tuned units in response to the CW 
rotating stimulus. (Xs, Ys)  represents the coordinates of the AOR in pixels. Theoretically predicted 
value is represented by brightness. 

 
 
 
 
 

0.5

0.6

0.7

0.8

0.9

1
CCW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
Expansion-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
CW rotation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
Contraction-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
0 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
90 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

0.5

0.6

0.7

0.8

0.9

1
180 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5
0.5

0.6

0.7

0.8

0.9

1
270 degree translation-sensitive unit

Xs

Ys

-5 0 5

-5

0

5

 
 

Figure 4.16: Theoretical prediction of outputs from eight different tuned units in response to the 
CCW rotating stimulus. (Xs, Ys)  represents the coordinates of the AOR in pixels. Theoretically 
predicted value is represented by brightness. 

 
 
 
 



  

   
   
  62 

 
 
 

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

Contraction-sensitive unit

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

Expansion-sensitive unit

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

CW rotation-sensitive unit

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

CCW rotation-sensitive unit

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

0 degree translation-sensitive unit

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

90 degree translation-sensitive unit

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

180 degree translation-sensitive unit

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

270 degree translation-sensitive unit

 
 

Figure 4.17: Theoretical prediction of outputs from eight different tuned units in response to the 
translational stimulus. 

 
 

In calculating theoretical values, it is assumed that any transceiver pixel gives rise 

to a response 1 if there is any component of the stimulus in the preferred direction of that 

pixel. It contributes a value 0 otherwise. The contributions from all the pixels have been 

added to get the final value. The theoretical plots have not taken the effect of the 

thresholding circuit (described in Chapter 2) into account, which is the main reason 

behind the difference between the practical outputs and the theoretical predictions. The 

outputs of complex units in Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11 do not 

show as sharp a peak as their counterpart in the theoretical plots because of this 

thresholding effects of the receiver pixels. Another reason for not having a sharp peak 

lies in the stimulus shape. For an expanding stimulus, the expanding circle starts with a 

non-zero bar-width defined in the stimulus generating function. So, some pixels near the 

FOE do not see a passing edge. Moreover, each expanding circle does not start exactly 

the same. Similarly, for a contracting stimulus, the contracting circle has a non-zero bar-

width when it disappears in the center. So, some pixels near the FOC do not see a passing 

edge. Moreover each contracting circle does not disappear exactly the same. The 

intersection of the rotating bars in CCW and CW rotational stimuli is not a point, but a 

square region with non-zero length of sides. So, some pixels near the AOR in both 



  

   
   
  63 

rotational stimuli do not see a passing edge. The reason for the difference in the output of 

contraction-sensitive unit in Figure 4.8 and the output of expansion-sensitive unit in 

Figure 4.9 is that although the same circular stimulus has been used to generate 

expanding and contracting patterns, one is not necessarily the reverse playback of the 

other. This difference in stimuli causes the difference between these two plots. Any 

difference between the output of CW rotation-sensitive unit in Figure 4.10 and the output 

of CCW rotation-sensitive unit in Figure 4.11 has also been arisen from a difference in 

the stimulus. Although theoretically, the range of translational motion having a 

component in preferred direction of any channel extends 90° both ways of the preferred 

direction, practically it extends less than 90°. This is because the transceiver cannot 

detect motion above a certain velocity and at some angles near 90° from the preferred 

direction, an edge crosses two neighboring pixels so fast that the speed limit for motion 

detection is exceeded. The polar plots of the translational-sensitive units of Figure 4.12 

show this fact. This contributes to making the output plots differ from their theoretical 

counterparts. 
 

4.6 Experiment 2: Expansion sensitivity while changing receiver 
threshold 

 
This experiment shows the dependence on Vqua (receiver threshold) of the 

sensitivity of the system to expanding patterns. The effects are similar for contracting, 

CCW rotating and CW rotating patterns. 
 

4.6.1 Setup 
 

The motion processor has been made sensitive to expanding patterns with the 

FOE at the center of the visual field only. An expanding stimulus has been presented on 

the LCD monitor and the FOE is varied over 33X33 screen positions over the field of 

view of the chip. Output has been recorded for every position of FOE. The Vqua bias has 

been changed for each run. 



  

   
   
  64 

4.6.2 Result 
 

The gray scale plots of outputs are shown in Figure 4.18 for different Vqua biases. 

From these plots, we can see that the output varies with changing Vqua bias as expected 

from the analysis in chapter 2. Because the charging current of the capacitor changes with 

Vqua bias, the output voltage Vmem changes accordingly (Figure 2.10). Figure 4.19 shows 

a plot of performance vs. Vqua bias. Performance varies for different Vqua. The plot shows 

that Vqua=4.76 gives us the best performance. This performance is even higher than the 

standard performance shown in section 4.3 because of the thresholding effect of the 

receiver pixel discussed in chapter 2. 

0

0.5

1

1.5

2

2.5

3

3.5

4
Vqua = 4.77V 

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Vqua = 4.75V

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

Vqua = 4.765

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Vqua = 4.755V

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 1

1.5

2

2.5

3

3.5

4

Vqua = 4.74V

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Vqua = 4.76V

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 

Figure 4.18: Output from expansion-tuned unit for different Vqua bias settings. (Xs, Ys) represents 
the coordinates of the FOE in screen pixels. Output is represented by brightness. 

 
The performance calculated from the output of the expansion-sensitive unit in 

response to the expanding stimulus in experiment 1 is 1.5.  From the performance vs. 

Vqua bias plot shown in Figure 4.19, we can see that performance varies with changing 

Vqua and that this bias can be set such that the same performance as experiment 1 (1.5) 

can be found from the expansion-tuned unit if it is synthesized alone. Therefore, we are 

not losing performance by synthesizing all eight units at once in experiment 1. 



  

   
   
  65 

4.74 4.745 4.75 4.755 4.76 4.765 4.77 4.775
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55
Performance vs. Vqua

Vqua

Pe
rfo

rm
an

ce

 

Figure 4.19: Performance vs. Vqua bias plot. 

 

4.7 Experiment 3: Varying receptive field size 
 

This experiment investigates if it is possible to get good performance without 

using the full receptive field. If good performance can be achieved using only a part of 

the receptive field, then it will be possible to do multiple tasks simultaneously dedicating 

different partial receptive fields for different tasks. In that way, we can do more tasks in a 

smaller amount of time. It is obvious that this more efficient processing can come only at 

the cost of performance. 
 

4.7.1 Setup 
 

In this experiment, the motion processor has been made sensitive to expanding 

patterns with the FOE at the center of the visual field of the chip. The PIC has been 

programmed with varying receptive fields (12 X 12, 10 X 10, 8 X 8, 6 X 6, 4 X 4 and 2 X 

2 pixels) for different runs. An expanding stimulus has been presented on the LCD 

monitor and the FOE is varied over 33X33 screen positions over the field of view of the 

chip. Output has been recorded for every position of FOE. 



  

   
   
  66 

0.5

1

1.5

2

2.5

3

3.5

4

12X12 receptive field

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

4X4 receptive field

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80
0.5

1

1.5

2

2.5

3

3.5

4

6X6 receptive field

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

8X8 receptive field

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80
0.5

1

1.5

2

2.5

3

3.5

4

10X10 receptive field

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

2X2 receptive field

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 
Figure 4.20: Outputs from expansion-tuned units synthesized using different receptive fields. (Xs, Ys) 
represents the coordinates of the FOE in screen pixels. Output is represented by brightness. 

 

4.7.2 Result 
 

Figure 4.20 shows the output plots for different receptive fields. Corresponding 

theoretical predictions are shown in Figure 4.21 without considering the threshold effect 

of the receiver. The Vqua bias has been changed to account for the change in spike 

frequency for different receptive fields. In each case, the Vqua bias has been set to a value 

so that the average outputs over the 33X33 screen positions are same for all receptive 

fields. This gives rise to four distinct screen pixel regions that are blurred for some 

reduced receptive fields to compensate for worse response, i.e. lower output in the central 

region for reduced receptive field. The reason behind this lower output in the central 

region is that the expanding circle starts with a non-zero width and the percentage of the 

total pixels (used in synthesizing the expansion-sensitive units) not seeing any motion 

increases for reduced receptive field when the FOE is at the center. Performance is 

plotted vs. receptive field in Figure 4.22, which shows that a receptive field of as little as 

10 X10 pixels can be used without lowering the performance below the standard. If we 

reduce the receptive field more the performance drops below the standard. As the 



  

   
   
  67 

transceiver core in use has only 12X12 pixels, there is not much benefit in reducing this 

receptive field (from 12X12 to 10X10) in the system in hand. But for a transceiver core 

of 128X128, the system will be able to perform much more tasks by using this reduced 

receptive field instead of the full receptive field. 

 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
12X12 receptive field

Xs

Y
s

-5 0 5

-6

-4

-2

0

2

4

6

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11
4X4 receptive field

Xs

Y
s

-5 0 5

-6

-4

-2

0

2

4

6
0.14

0.16

0.18

0.2

0.22

0.24

6X6 receptive field

Xs

Y
s

-5 0 5

-6

-4

-2

0

2

4

6

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
8X8 receptive field

Xs

Y
s

-5 0 5

-6

-4

-2

0

2

4

6 0.35

0.4

0.45

0.5

0.55

0.6

0.65

10X10 receptive field

Xs

Y
s

-5 0 5

-6

-4

-2

0

2

4

6

0.03

0.035

0.04

0.045

0.05

0.055
2X2 receptive field

Xs

Y
s

-5 0 5

-6

-4

-2

0

2

4

6

 
Figure 4.21: Theoretical predictions from expansion-tuned units synthesized using different receptive 
fields. (Xs, Ys) represents the coordinates of the FOE in pixels. Theoretically predicted value is 
represented by brightness. 

 

2 4 6 8 10 12
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Performance vs. Receptive field

Receptive field

Pe
rfo

rm
an

ce

 
 

Figure 4.22: Performance vs. Receptive field plot. The numbers in receptive field axis represent a 
square region. For example the number 12 represents a receptive field of 12X12 pixels. 



  

   
   
  68 

4.8 Experiment 4: Effects of PIC speed and sequential mapping 
 

This experiment shows the effects of PIC speed and the sequential mapping by 

the routing processor to several receiver pixels on output values. 
 

4.8.1 Setup 
 

The transceiver pixels have been mapped to nine different receiver pixels to make 

all nine units of the motion processor tuned to expanding patterns with the FOE at the 

center of the visual field of the chip. An expanding stimulus has been presented on the 

LCD monitor and the FOE is varied over 33X33 screen positions over the field of view of 

the chip. Output has been recorded from each of the nine receiver pixels for every 

position of FOE. 
 

4.8.2 Result 
 

The output plots of nine units are shown in Figure 4.23. Although all these plots 

should look the same theoretically, a difference in output has arisen from the low speed 

of the PIC. The PIC sends nine requests sequentially to the receiver for each request 

coming from a transceiver. So, there is a 9 to 1 slowdown in this implementation. In this 

implementation, receiver pixel 1 receives the request first and pixel 9 receives it last, 

mapping in a sequence in ascending pixel numbers. The time span from one request to 

the other (sent by this slow PIC) is so large that the integrated output of the earlier 

mapped pixels gets significantly more time to decay than that of the later mapped pixels 

before the output values from all nine pixels are scanned out. So, a gradual increase in 

output values is seen from the earlier mapped pixels to the later mapped pixels. Pixel 9 

has the most recent output value and pixel 1 has the oldest. Figure 4.23 shows that only 

four pixels (pixel 4 through pixel 7) are giving useful outputs in this implementation. So, 

we can say that this system gives useful output up to 4 to 1 slowdown by the PIC. This 

sets the limit of this system. Experiment 1 was successful, because we had 4 to 1 

slowdown there though eight units were synthesized simultaneously. Changing the Vqua 



  

   
   
  69 

bias changes the outputs in all nine receiver pixels. Therefore, the Vqua bias can be set 

such that any four pixels in a row among these nine pixels give useful outputs. 

3.4

3.6

3.8

4

4.2

Pixel 9

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
x 10

-3Pixel 1

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

x 10
-3Pixel 3

Xs

Ys

-50 0 50

-50

0

50

0

0.2

0.4

0.6

0.8

1

Pixel 4

Xs

Ys

-50 0 50

-50

0

50
0.5

1

1.5

Pixel 5

Xs

Ys

-50 0 50

-50

0

50
1

1.5

2

2.5

3

3.5

4

Pixel 6

Xs

Ys

-50 0 50

-50

0

50

1

2

3

4
Pixel 7

Xs

Ys

-50 0 50

-50

0

50
2.5

3

3.5

4

Pixel 8

Xs

Ys

-50 0 50

-50

0

50

0

2

4

6

x 10
-6Pixel 2

Xs

Ys

-50 0 50

-50

0

50

 

Figure 4.23: Outputs from nine units tuned to expanding patterns with the FOE position at the 
center. (Xs, Ys) represents the coordinates of the FOE in screen pixels. Output is represented by 
brightness. 

 

4.9 Experiment 5: Expansion-sensitive units for 3X3 FOE 
positions 

 
This experiment shows how this motion processor performs in simultaneous 

detection of expanding patterns with different positions of FOE over the field of view of 

the chip. 
 

4.9.1 Setup 
 

The address lines from transceivers have been mapped to nine receiver pixels 

using the PIC in such a way that the motion processor becomes sensitive to expanding 



  

   
   
  70 

patterns with nine different positions of FOE. An expanding stimulus has been presented 

on the LCD monitor and the FOE has been varied over 33X33 screen positions over the 

field of view of the chip. Output has been recorded from each of the nine receiver pixels 

for every position of FOE. 

2.5

3

3.5

4

4.5
FOE position 9

Xs

Ys

-50 0 50

-50

0

50

0.2

0.4

0.6

0.8

1

FOE position 1

Xs

Ys

-50 0 50

-50

0

50

0

0.5

1

1.5

FOE position 3

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4
FOE position 4

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

FOE position 5

Xs

Ys

-50 0 50

-50

0

50

0

1

2

3

4

FOE position 6

Xs
Ys

-50 0 50

-50

0

50

0

1

2

3

4

FOE position 7

Xs

Ys

-50 0 50

-50

0

50
1.5

2

2.5

3

3.5

4

4.5
FOE position 8

Xs

Ys

-50 0 50

-50

0

50

0

0.2

0.4

0.6

0.8

1

1.2

FOE position 2

Xs

Ys

-50 0 50

-50

0

50

 

Figure 4.24: Outputs from nine units tuned to nine different FOE positions. (Xs, Ys) represents the 
coordinates of the FOE in screen pixels. Output is represented by brightness. 

 

4.9.2 Result 
 

The outputs from nine receiver pixels are shown in Figure 4.24. The 

corresponding theoretical plots are shown in Figure 4.25 without considering the 

threshold effect of the receiver. Figure 4.24 shows a large difference in the range of 

output values from nine different units because of the low speed of the PIC and the 

effects of sequential mapping by the PIC described in experiment 4. From the plots, it is 



  

   
   
  71 

clearly seen that the motion processor works very well to detect expanding patterns with 

FOE positions four through seven (four FOE positions). Although the other five FOE 

positions could not be detected so strongly, these plots of Figure 4.24 shows some trends 

of the sensitivity of those units to the respective FOE positions. This experiment supports 

the fact that 4 to 1 slowdown by the PIC is the limit of this system to have useful outputs. 

Changing the Vqua bias changes the outputs from nine receiver pixels corresponding to 

nine FOE positions. Therefore, the Vqua bias can be set such that any four pixels in a row 

among these nine pixels corresponding to respective FOE positions give useful outputs. 

Although this experiment synthesizes units only to the expanding patterns, 

synthesizing units for contracting, CCW rotating and CW rotating patterns with different 

positions of FOC/AOR can be similarly done by combining appropriate region from each 

transceiver. So, this motion processor can be used in determining singular points over the 

field of view of the chip. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FOE position 9

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FOE position 1

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6 0.3

0.4

0.5

0.6

0.7

0.8

0.9

FOE position 3

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6

0.4

0.5

0.6

0.7

0.8

0.9

1
FOE position 4

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6 0.5

0.6

0.7

0.8

0.9

1
FOE position 5

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6 0.4

0.5

0.6

0.7

0.8

0.9

1
FOE position 6

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FOE position 7

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6 0.4

0.5

0.6

0.7

0.8

0.9

1
FOE position 8

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6

0.4

0.5

0.6

0.7

0.8

0.9

1
FOE position 2

Xs

Ys

-5 0 5

-6

-4

-2

0

2

4

6

 

Figure 4.25: Theoretical prediction of outputs from nine units tuned to nine different FOE positions. 
(Xs, Ys)  represents the coordinates of the FOE in pixels. Theoretically predicted value is represented 
by brightness. 



  

   
   
  72 

 

4.10 Experiment 6: Large and small expanding field 
 

This experiment shows how this motion processor can be made sensitive to large 

and small expanding fields at the same time. 

 

 

 

 

 

 

 

 

Figure 4.26: Mapping of transceiver pixels to the receiver pixels. Black and gray colored pixels are 
mapped to two different receiver pixels to make one tuned to small expansion and the other tuned to 
large expansion. 

 

4.10.1 Setup 
 

The address lines from the transceivers have been mapped to two different pixels 

of the receiver. Black colored transceiver pixels of Figure 4.26 have been mapped to one 

receiver pixel and the gray colored pixels have been mapped to the other. One of these 

two units, representing black transceiver pixels, is tuned to small expanding field and the 

other, representing gray transceiver pixels, is tuned to large expanding field. An 

expanding stimulus with the FOE at the center of the visual field has been presented on 

the LCD monitor and the maximum radius of the expanding circle, i.e. the magnitude of 

the expanding field is varied so that the largest circle covers the field of view of the chip. 

Outputs have been recorded from both of the receiver pixels for every magnitude of the 

expanding field. 
 

(a) (b) (c) (d) 



  

   
   
  73 

4.10.2 Result 
 

Figure 4.27 shows the plots of outputs from both receiver pixels vs. the maximum 

radius of the expanding field for each expanding field. From the plots, it is clearly seen 

that the unit tuned to small expanding field is sensitive to small expanding patterns and 

the unit sensitive to large expanding field is sensitive to large expanding patterns. The 

unit tuned to large expanding field does not respond for small expanding patterns. The 

unit tuned to small expanding field does not respond for very small expanding radius, 

because the expanding patterns start with non-zero bar-widths and so, this unit does not 

see any motion for very small values of radii of the expanding patterns. The larger value 

of output from the small expansion-tuned unit than that of the large expansion-tuned unit 

is due to the fact that four rows of pixels are mapped to one receiver pixel to synthesize 

the small expansion-tuned unit and only two rows of pixels are mapped to one receiver 

pixel to synthesize the large expansion-tuned unit. The output of the small expansion-

tuned unit drops for radius greater than about sixty five screen pixels because the inter-

stimulus interval increases significantly for these radii. 

 

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
"*"-large expansion                 "o"-small expansion

Radius r

Ou
tp

ut

 
Figure 4.27: Output vs. Maximum expanding circle radius plot. Radius is measured in screen pixels. 

 



  

   
   
  74 

4.11 Experiment 7: Effects of receiver pixel mismatch 
 

This experiment demonstrates the effect of receiver pixel mismatch on the output. 

Signals coming from different pixels of different transceivers are directed to only one 

receiver pixel to have one particular tuning. Therefore, receiver pixel mismatch will 

result in different output values for different receiver pixels used. 
 

4.11.1 Setup 
 

The motion processor has been made sensitive only to the expanding patterns with 

FOE at the center of the visual field of the chip. Two receiver pixels have been used to 

have this tuning in two different runs. An expanding pattern is presented on the LCD 

monitor. The FOE of the patterns has been varied over 33X33 screen positions over the 

field of view of the chip. Output has been recorded for every position of FOE of the 

stimulus.  
 

0.5

1

1.5

2

2.5

3

3.5

4

Pixel 2

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

800

0.5

1

1.5

2

2.5

3

Pixel 1

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 
 

Figure 4.28: Outputs from expansion-sensitive units implemented on two different receiver pixels. 
(Xs, Ys) represents the coordinates of the FOE in screen pixels. Output is represented by brightness. 

 

4.11.2 Result 
 

Figure 4.28 shows the outputs from the expansion-sensitive units implemented on 

two different receiver pixels. The difference in outputs from two different receiver pixels 

is evident from these plots. The average outputs from pixel 1 and pixel 2 are 0.9 and 1.49 



  

   
   
  75 

respectively. The performances are 1.46 and 1.45 respectively, indicating that these two 

pixels do not suffer much from mismatch for this particular bias setting. However, other 

bias settings might cause a larger difference in performance from these two pixels, as 

indicated from the difference in output levels. 
 

4.12 Experiment 8: Variation of expanding stimulus speed 
 

This experiment demonstrates the effect of variation in speed of expanding 

stimulus on performance. 
 

4.12.1 Setup 
 

The motion processor has been made sensitive only to expanding patterns with 

FOE at the center of the visual field of the chip. An expanding pattern is presented on the 

LCD monitor. The FOE of the patterns has been varied over 33X33 screen positions over 

the field of view of the chip. Output has been recorded for every position of FOE of the 

stimulus. The speed of the stimulus has been changed for each run. 

 

4.12.2 Result 
 

The output plots are shown in Figure 4.29. As the speed of stimulus is increased 

beyond a particular speed the motion processor is no longer sensitive to the expanding 

patterns with a centered FOE, because beyond that speed the simple sensors of this 

motion processor cannot detect motion. Figure 4.30 shows the performance vs. stimulus 

speed plot. It shows that the performance decreases below the standard value beyond a 

certain speed as expected. 
 

4.13 Experiment 9: Variation of expanding stimulus width 
 

This experiment demonstrates the effect of variation in width of expanding 

stimulus on performance. 



  

   
   
  76 

0

0.5

1

1.5

2

2.5

3

3.5

4

Speed=2

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 0.5

1

1.5

2

2.5

3

3.5

4

Speed=4

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Speed=6

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

Speed=8

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 0

0.5

1

1.5

2

2.5

3

3.5

Speed=10

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 0

0.5

1

1.5

2

2.5

Speed=12

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 

Figure 4.29: Outputs from expansion-tuned unit for different expanding stimulus speed. (Xs, Ys) 
represents the coordinates of the FOE in screen pixels. Output is represented by brightness. 

 
 

2 4 6 8 10 12
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Performance vs. Speed

Speed

Pe
rfo

rm
an

ce

 
 

Figure 4.30: Performance vs. expanding stimulus speed plot. 

 
 



  

   
   
  77 

4.13.1 Setup 
 

The motion processor has been made sensitive only to expanding patterns with 

FOE at the center of the visual field of the chip. An expanding pattern is presented on the 

LCD monitor. The FOE of the patterns has been varied over 33X33 screen positions over 

the field of view of the chip. Output has been recorded for every position of FOE of the 

stimulus. The width of the stimulus has been changed for each run. 

 

4.13.2 Result 
 

The output plots are shown in Figure 4.31, which shows that the motion processor 

cannot detect expanding patterns of bar-width of 1 through 5 screen pixels because, for 

these small bar-widths, the TEDs used in the sender chip do not have enough variation in 

photoreceptor signal to detect an edge. Figure 4.32 shows the performance vs. stimulus 

width plot from which we can see that bar-width of values from 9 to 11 screen pixels 

results in a performance near the standard value. 

 

-1

-0.5

0

0.5

1
Expanding bar-width = 1

Xs

Ys

-50 0 50

-50

0

50 1

2

3

Expanding bar-width = 3

Xs

Ys

-50 0 50

-50

0

50

0

0.5

1

1.5

2

2.5

Expanding bar-width = 5

Xs

Ys

-50 0 50

-50

0

50 1

2

3

4

Expanding bar-width = 7

Xs

Ys

-50 0 50

-50

0

50

1

2

3

4

Expanding bar-width = 9

Xs

Ys

-50 0 50

-50

0

50 1

2

3

4
Expanding bar-width = 10

Xs

Ys

-50 0 50

-50

0

50

1

2

3

4

Expanding bar-width = 11

Xs

Ys

-50 0 50

-50

0

50 1

2

3

Expanding bar-width = 13

Xs

Ys

-50 0 50

-50

0

50

 
 

Figure 4.31: Outputs from expansion-tuned unit for different expanding stimulus width. (Xs, Ys) 
represents the coordinates of the FOE in screen pixels. Output is represented by brightness. 



  

   
   
  78 

0 2 4 6 8 10 12 14
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Performance vs. Expanding bar width

Bar width

Pe
rfo

rm
an

ce

 
Figure 4.32: Performance vs. expanding stimulus width plot. Bar width is measured in screen pixels. 

 

4.14 Experiment 10: Variation of CCW rotating stimulus speed 
 

This experiment demonstrates the effect of variation in speed of a rotating 

stimulus on performance. 
 

4.14.1 Setup 
 

The motion processor has been made sensitive only to CCW rotating patterns with 

axis of rotation (AOR) at the center of the visual field of the chip. A CCW rotating 

pattern is presented on the LCD monitor. The AOR of the patterns has been varied over 

33X33 screen positions over the field of view of the chip. Output has been recorded for 

every position of AOR of the stimulus. The speed of the stimulus has been changed for 

each run. 

 

4.14.2 Result 
 

The output plots are shown in Figure 4.33. All of these plots show low output 

values instead of strong responses in the central regions. This anomalous behavior has 



  

   
   
  79 

arisen from a stimulus artifact. A slowly moving black region appears superimposed on 

the stimulus when the AOR is in the central region as shown in Figure 4.34. This has 

arisen from a beat frequency between the refresh rate of the monitor and the update of the 

program; the program is still updating the graphics memory when the monitor displays it. 

The stimulus is faster in the central region because smaller bars are drawn in this region 

of AOR to cover the visual field. Experiment 1 does not suffer from this stimulus artifact 

because the time span between drawing bars is greater there than that of this experiment. 

This is because eight pixels were scanned out in experiment 1 while drawing the 

stimulus, resulting in a slower stimulus. 

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.05

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.21

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.042

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.07

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 0

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.105

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.035

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 
 

Figure 4.33: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus speed. 
(Xs, Ys) represents the coordinates of the AOR in screen pixels. Output is represented by brightness. 

 
The stimulus artifact has been eliminated by incorporating delays in the stimulus 

generating/data recording program and the new results are plotted in Figure 4.35. The 

corresponding performance versus stimulus speed plot is shown in Figure 4.36 which 

shows good performance over a certain range of stimulus speed as expected because the 

simple motion sensors used to compute motion in this motion processor are sensitive to a 

fixed range of speed of motion. 



  

   
   
  80 

 
 
 

Figure 4.34: Photograph of the CCW rotating stimulus with an artifact when the AOR is near the 
central region. 

 

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.05

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.21

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.042

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.07

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.105

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Speed = 0.035

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 
 

Figure 4.35: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus speed. 
(Xs, Ys) represents the coordinates of the AOR in screen pixels. Output is represented by brightness. 

 

4.15 Experiment 11: Variation of CCW rotating stimulus width 
 

This experiment demonstrates the effect of variation in the width of rotating 

stimulus on performance. 



  

   
   
  81 

0 0.05 0.1 0.15 0.2 0.25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Performance vs. Stimulus speed

Stimulus speed

P
er

fo
rm

an
ce

 
 
 

Figure 4.36: Performance vs. CCW rotating stimulus speed plot. 

 

4.15.1 Setup 
 

The motion processor has been made sensitive only to CCW rotating patterns with 

axis of rotation (AOR) at the center of the visual field of the chip. A CCW rotating 

pattern is presented on the LCD monitor. The AOR of the patterns has been varied over 

33X33 screen positions over the field of view of the chip. Output has been recorded for 

every position of AOR of the stimulus. The width of the stimulus has been changed for 

each run. 
 

4.15.2 Result 
 

The output plots are shown in Figure 4.37. These outputs also suffer from the 

stimulus artifact (Figure 4.34) mentioned in the previous experiment.  

The stimulus artifact has been eliminated by incorporating delays in the stimulus 

generating/data recording program and the new results are plotted in Figure 4.38. The 

corresponding performance versus stimulus width plot is shown in Figure 4.39 which 



  

   
   
  82 

shows good performance for the stimulus width of 3 screen pixels or more. For bar-width 

of 1 screen pixel, the TEDs used in the sender chip do not have enough variation in 

photoreceptor signal to detect an edge. 

0

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 5

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Bar width = 3

Xs
Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

x 10
-5Bar width = 1

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 7

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 9

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 0

0.5

1

1.5

2

2.5

3

3.5

Bar width = 11

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 
Figure 4.37: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus width. 
(Xs, Ys) represents the coordinates of the AOR in screen pixels. Output is represented by brightness. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 5

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

800

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 3

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Bar width = 1

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 7

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 9

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80 0

0.5

1

1.5

2

2.5

3

3.5

4

Bar width = 11

Xs

Y
s

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

 
Figure 4.38: Outputs from CCW rotation-sensitive unit for different CCW rotating stimulus width. 
(Xs, Ys) represents the coordinates of the AOR in screen pixels. Output is represented by brightness. 



  

   
   
  83 

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Performance vs. Bar width

Bar width

Pe
rfo

rm
an

ce

 
 

Figure 4.39: Performance vs. CCW rotating stimulus width plot. Bar width is measured in screen 
pixels. 

 



  

   
   
  84 

 

5 Conclusions 
 
 
 
 

In this work, a multichip neuromorphic motion processor has been presented. This 

motion processor has been made sensitive to complex spatial patterns of motion in the 

visual field. Patterns of expansion, contraction, rotation and translation and combinations 

of these might be encountered in the self-motion of a robotic system. Although a chip can 

be fabricated to detect any one of these complex patterns on a die of reasonable size, it 

increases die size drastically to make the circuit tuned to all of these complex patterns. A 

multichip system is well suited for this. This motion processor has been implemented on 

biological motion processing strategies that make use of multiple stages of simple parallel 

processors. This system retains the primary advantages of focal plane neuromorphic 

image processors: low power consumption, continuous-time operation and small size. So, 

this multichip motion processing system is ideal for sophisticated, real-time onboard 

sensors for autonomous robotics applications. 

 

5.1 Limitations 
 

However, there are some limitations to this motion processor. Although all the 

neuromorphic chips used in this motion processor can communicate spikes at much 

higher frequencies in the absence of the PIC, the frequency drops drastically after 

incorporating the PIC. The PIC used in this work runs at a clock rate of 33 MHz and each 

instruction takes four clock cycles to complete, taking the pipeline structure in 

consideration. Many instructions are executed in the PIC between the occurrences of two 

spikes. Therefore, the PIC is limiting the spike frequency in this motion processor.  

In synthesizing different units simultaneously, the PIC sends a number of requests 

(N) sequentially to the receiver for each request coming from a transceiver, resulting in N 



  

   
   
  85 

to 1 slowdown. Using this PIC, we do not get useful output with a slowdown of more 

than 4 to 1. The PIC speed and sequential mapping limits this number.  

Although we are using an asynchronous digital bus for communicating address 

events (to and from neuromorphic chips) the routing processor (PIC) operates on clocks, 

which effectively discretize time resulting in interference with the functions of 

neuromorphic chips. This introduces discretization errors in the time domain for 

continuous time operation. 

Another limitation of this motion processor is the manual biasing of the 

equilibrium frequency f0, by the Vqua bias. The range of incoming spike frequencies to the 

receiver varies for different mappings of the units in motion processor. Thus the Vqua bias 

has to be changed manually, so that f0 matches with the incoming spike frequency range. 

Because there are only 12X12 pixels in each transceiver, benefits from using 

reduced receptive fields could not be used fully. 

Finally, receiver pixel mismatch makes the output different for the same unit 

synthesized on different receiver pixels, although this was not seen to be a major 

problem. 

 

5.2 Future Work
 

The limitations discussed in the previous section suggest to build a system which 

does not need to be biased manually for the synthesis of different units. We cannot get rid 

of sequential mapping as the neuromorphic chips in use also work on requests in a 

sequential manner. So, we should use a routing processor as fast as possible. It will help 

in synthesizing more units simultaneously by supporting more slowdown (N to 1). 

Replacing the PIC microcontroller with asynchronous FPGA hardware [37] for address 

event mapping will make the motion processor faster and more energy efficient at the 

cost of flexibility. In redesigning the integrating receiver, efforts in automatically biasing 

the thresholding effect and minimizing pixel mismatch will help to achieve outputs that 



  

   
   
  86 

are more closely matched to the theoretical predictions. Increasing the array size of pixels 

will help in using reduced receptive field effectively. 

This work shows the feasibility of the multichip system to perform complex tasks 

using simple units. Although this multichip system uses pulse based motion chips, 

multichip systems can also be built using motion chips that use other algorithms to 

compute motion.  Multichip systems can be developed to perform other sensory tasks 

such as in auditory sensing, disparity in vision and so forth. Some of them, for example 

motion and disparity, can be combined in one multichip system. 



  

   
   
  87 

6 Appendix A 
 
 

6.1 Detailed Schematic 
 

The schematic diagram of the motion processor is shown in Figure 6.1. All pin 

connections of the circuit are shown in this schematic diagram.  

The circuit diagram of the C-element is shown in Figure 6.2. The C-element is 

designed using inverters, 3-input NAND gates, 3-input NOR gates and SR flip-flops. 

Three C-element circuits are used to design the C-element4 (Figure 6.3) for asynchronous 

interfacing between the sender and four transceiver chips. A delay element is connected 

at the Rin pin of the C-element4 on the way of the REQ line to allow EPROM output lines 

to become stable before the REQ signal arrives at the transceiver chips. The delay 

element consists of two inverters in series. An RC circuit is added in between the two 

inverters as shown in Figure 6.4. Voltage regulators are used to have the power supply 

voltage of 8.5 volts down to about 5 volts before applying it to the circuit. Buffers are 

used to stabilize the bias voltages for the pins that draw current. The REQ and X-address 

outputs give inverted values out of the chips. So, these signals are inverted by using 

inverters in these lines. There are 12 X 14 pixels in the sender chip and 12 x 12 pixels in 

the transceiver chips. The Integrating receiver has a 27 x 29 array of pixels. Address 

mismatch between the sender and the transceivers and between the transceivers and the 

receiver might cause lock-up of the system. So, reset circuitry has been added to each of 

the transceivers and the receiver in order to handle these address mismatches. There are 

only 33 I/O pins available from the PIC, which is not enough to accommodate eight 

address lines from each of the four transceivers. So, an 8 bit-wide 4/1 multiplexer is used 

to reduce the I/O pins needed for the address lines from the transceivers. Only two I/O 

pins are used to select the address lines from one of the four transceivers. The 8 bit-wide 

4/1 multiplexer has been built using six 4 bit-wide 2/1 multiplexers (IC 74157) as shown 

in Figure 6.5. Incorporation of the multiplexer obviously introduces some extra delay. 



  

   
   
  88 

The communications interface circuit of the sender and on the sending side of the 

transceiver suffers from a race condition (referring to Figure 2.4 and Figure 2.8, if Vmem 

is reset by ACK before Dpix goes completely high then Dpix will go low again) as a result 

of excessive requests on the bus and the circuit can get stuck in that condition. The PIC 

has been made to watch for stuck transceivers and one pin of the PIC has been used to 

send reset signal to the transceivers. The stuck condition in the sender chip has been 

eliminated by proper biasing. The receiver is connected to an interface card on the 

computer to allow display on the computer screen. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

   
   
  89 

 
 

 

Figure 6.1: Schematic diagram of the developed multichip motion processor. 



  

   
   
  90 

 

 
 

Figure 6.2: C-element. 

 

 

Figure 6.3: C-element4 designed with C-element. 

 

Figure 6.4: Delay element. 



  

   
   
  91 

 

Figure 6.5: 8 bit wide 4 to 1 multiplexer designed with 4 bit wide 2 to 1 multiplexers.



  

   
   
  92 

 

7 Appendix B 
 
 

7.1 PIC Programming 
 

7.1.1 Simultaneous Synthesis of Complex and Translational Units 
 

The PIC makes exactly four requests to the receiver for every request it receives 

from any transceiver. Two requests are required to implement four complex units 

simultaneously. One more request is necessary to implement the units tuned to four 

directions of translational motion. But this difference in the number of requests (spike 

frequencies) to the receiver pixels corresponding to four complex units and four 

translational units require different receiver (Vqua) bias settings for complex and 

translational units. This problem has been resolved by sending an additional request to 

the receiver pixels corresponding to translational units. This makes the spike frequencies 

same for complex units and translational units and thus makes the system work for a 

single receiver bias setting. 
 

7.1.1.1 Header File: cmtrhf2.h 
 
#ifndef CMTRHF2_H 
#define CMTRHF2_H 
 
#define TRUE  1 
#define FALSE 0 
 
void __STARTUP(void);          
void _INT(void);               
void _TMR0(void);              
void _T0CKI(void);             
void _PIV(void);               
void main(void);               
#endif 
 



  

   
   
  93 

7.1.1.2 C File:cmtrhf2.c 
 
#include <P17Cxx.H>          
 
#include "CMTRHF2.H 
#include <STDDEF.H 
#define Device_CLK  33000000    // Device Oscillator is 33 MHz 
 
unsigned int cnt = 0;            
unsigned int ranreq; 
unsigned int ran; 
char done = 0; 
unsigned int cnt0, cnt1, cnt2, cnt3; 
/* 
33 CONTRACTION 
34 EXPANSION 
35 CW ROTATION 
36 CCW ROTATION 
*/ 
 
//Address mapping 
rom unsigned exp1[192] = { 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp2[192] = { 
0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned *pexp1; 
rom unsigned *pexp2; 
 



  

   
   
  94 

//initialization 
void __STARTUP(void) 
{ 
    DDRB = 0x55; 
    PORTB = 0; 
    PORTA = 0; 
    DDRC = 0; 
    PORTC = 0; 
    DDRD = 0xFF; 
    PORTD = 0; 
    DDRE = 0; 
    PORTE = 0; 
} 
// INT interrupt handler 
void _INT(void) 
{ 
      while (1)        
   {                
   }                
} 
 
// TMR0 interrupt handler 
void _TMR0(void) 
{ 
   while (1)        
   {                
   }                
} 
 
// T0CKI interrupt handler 
void _T0CKI(void) 
{ 
   while (1)        
   {                
   }                
} 
 
// PIV interrupt handler 
void _PIV(void) 
{ 
     while (1)        
   {                
   }                
} 
void main(void) 
{ 
    Install_INT(_INT);           
    Install_TMR0(_TMR0);         
    Install_T0CKI(_T0CKI);       
    Install_PIV(_PIV);           
 
    PORTAbits.RA2 = 0; // MSB of the receiver address 
    PORTAbits.RA3 = 1; // reset transceivers for stuck condition 



  

   
   
  95 

    while(1)                        { 
 while (done == 0) //look for a transceiver request 
 { 
     cnt++; 
     if (cnt > 3) cnt = 0; 
     ranreq = cnt * 2; 
     switch (ranreq) 
     { 
  case 0: 
      if (PORTBbits.RB0 == 1)  
      {  
   PORTBbits.RB1 = 1; 
   done =1; 
   cnt0 = 0; 
       PORTBbits.RB1 = 0; 
      } 
      else 
   cnt0++; 
      break; 
  case 2: 
      if (PORTBbits.RB2 == 1) 
      {  
   PORTBbits.RB3 = 1; 
   done =1; 
   cnt1 = 0; 
       PORTBbits.RB3 = 0; 
      } 
      else 
   cnt1++; 
      break; 
  case 4: 
      if (PORTBbits.RB4 == 1) 
      {  
   PORTBbits.RB5 = 1; 
   done =1; 
   cnt2 = 0; 
   PORTBbits.RB5 = 0; 
      } 
      else 
   cnt2++; 
       break; 
  case 6: 
      if (PORTBbits.RB6 == 1) 
      {  
   PORTBbits.RB7 = 1; 
   done =1; 
   cnt3 = 0; 
   PORTBbits.RB7 = 0; 
      } 
      else 
   cnt3++; 
       break;   
     }      



  

   
   
  96 

 } 
 
// Reset transceivers at stuck condition 
 if ((cnt0 > 4999) || (cnt1 > 4999) || (cnt2 > 4999) || (cnt3 > 4999))  
 { 
     PORTAbits.RA3 = 0; 
     cnt0 = 0; 
     cnt1 = 0; 
     cnt2 = 0; 
     cnt3 = 0; 
     PORTAbits.RA3 = 1; 
 } 
 done = 0; 
 ran = ranreq / 2; 
 if (ran < 2) PORTEbits.RE0 = ran; 
 else PORTEbits.RE0 = ran - 2; 
        PORTEbits.RE1 = ran / 2; 
 switch (ranreq) 
 { 
     case 0: 
         PORTC = 0x3A; 
         break; 
     case 2: 
         PORTC = 0x39; 
         break; 
     case 4: 
         PORTC = 0x38; 
         break; 
     case 6: 
         PORTC = 0x37; 
         break; 
 } 
 PORTEbits.RE2 = 1; // The first request to the translation-sensitive units 
        PORTEbits.RE2 = 0; 
 pexp1 = exp1 + PORTD; 
 PORTC = *pexp1; 
        PORTEbits.RE2 = 1; // The first request to the complex units 
        PORTEbits.RE2 = 0; 
 pexp2 = exp2 + PORTD; 
 PORTC = *pexp2; 
        PORTEbits.RE2 = 1; // The second request to the complex units 
        PORTEbits.RE2 = 0; 
 switch (ranreq) 
 { 
     case 0: 
         PORTC = 0x3A; 
         break; 
     case 2: 
         PORTC = 0x39; 
         break; 
     case 4: 
         PORTC = 0x38; 
         break; 



  

   
   
  97 

     case 6: 
         PORTC = 0x37; 
         break; 
 } 
 PORTEbits.RE2 = 1; // The second request to the translation-sensitive units 
        PORTEbits.RE2 = 0; 
    } 
} 
 

7.1.2 Synthesis of the Expansion-sensitive Unit Only 
 

7.1.2.1 Header File: onlyexp1.h 
 
#ifndef ONLYEXP1_H 
#define ONLYEXP1_H 
 
#define TRUE  1 
#define FALSE 0 
 
void __STARTUP(void);          
void _INT(void);               
void _TMR0(void);              
void _T0CKI(void);             
void _PIV(void);               
void main(void);               
#endif 
 

7.1.2.2 C File: onlyexp1.c 
 
#include <P17Cxx.H>          
 
#include "ONLYEXP1.H"        
#include <STDDEF.H>        
#define Device_CLK  33000000    // Device Oscillator is 33 MHz 
 
unsigned int cnt = 0;           // example 16-bit integer global variable 
unsigned int ranreq; 
unsigned int ran; 
char done = 0; 
unsigned int cnt0, cnt1, cnt2, cnt3; 
 
// Address mapping 
rom unsigned exp1[192] = { 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 



  

   
   
  98 

0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned *pexp1; 
 
//initialization 
void __STARTUP(void) 
{ 
    DDRB = 0x55; 
    PORTB = 0; 
    PORTA = 0; 
    DDRC = 0; 
    PORTC = 0; 
    DDRD = 0xFF; 
    PORTD = 0; 
    DDRE = 0; 
    PORTE = 0; 
} 
// INT interrupt handler 
void _INT(void) 
{ 
      while (1)        
   {                
   }                
} 
 
// TMR0 interrupt handler 
void _TMR0(void) 
{ 
   while (1)        
   {                
   }                
} 
 
// T0CKI interrupt handler 
void _T0CKI(void) 
{ 
   while (1)        
   {                
   }                
} 
 
// PIV interrupt handler 
void _PIV(void) 
{ 
     while (1)        
   {                
   }                



  

   
   
  99 

} 
void main(void) 
{ 
    Install_INT(_INT);           
    Install_TMR0(_TMR0);         
    Install_T0CKI(_T0CKI);       
    Install_PIV(_PIV);           
 
    PORTAbits.RA2 = 0; // MSB of the receiver address 
    PORTAbits.RA3 = 1; // reset transceivers for stuck condition 
 
    while(1)                        { 
 while (done == 0)  // Look for a transceiver request 
 { 
     cnt++; 
     if (cnt > 3) cnt = 0; 
     ranreq = cnt * 2; 
     switch (ranreq) 
     { 
  case 0: 
      if (PORTBbits.RB0 == 1)  
      {  
   PORTBbits.RB1 = 1; 
   done =1; 
   cnt0 = 0; 
       PORTBbits.RB1 = 0; 
      } 
      else 
   cnt0++; 
      break; 
  case 2: 
      if (PORTBbits.RB2 == 1) 
      {  
   PORTBbits.RB3 = 1; 
   done =1; 
   cnt1 = 0; 
       PORTBbits.RB3 = 0; 
      } 
      else 
   cnt1++; 
      break; 
  case 4: 
      if (PORTBbits.RB4 == 1) 
      {  
   PORTBbits.RB5 = 1; 
   done =1; 
   cnt2 = 0; 
   PORTBbits.RB5 = 0; 
      } 
      else 
   cnt2++; 
       break; 
  case 6: 



  

   
   
  100 

      if (PORTBbits.RB6 == 1) 
      {  
   PORTBbits.RB7 = 1; 
   done =1; 
   cnt3 = 0; 
   PORTBbits.RB7 = 0; 
      } 
      else 
   cnt3++; 
       break;   
     }      
 } 
 
// Reset transceivers at stuck condition 
 if ((cnt0 > 4999) || (cnt1 > 4999) || (cnt2 > 4999) || (cnt3 > 4999))   
 { 
     PORTAbits.RA3 = 0; 
     cnt0 = 0; 
     cnt1 = 0; 
     cnt2 = 0; 
     cnt3 = 0; 
     PORTAbits.RA3 = 1; 
}  
done = 0; 
  
ran = ranreq / 2; 
  
if (ran < 2) PORTEbits.RE0 = ran; 
  
else PORTEbits.RE0 = ran - 2; 
        PORTEbits.RE1 = ran / 2; 
  
pexp1 = exp1 + PORTD; 
  
PORTC = *pexp1; 
  
if (PORTC == 0x34) // 0x33 for contraction-sensitive unit only 
  
{ 
            PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
  
} 
    } 
} 
 
 



  

   
   
  101 

7.1.3 3X3 FOE Positions 

7.1.3.1 Header File:foe9ps1.h 
 
#ifndef FOE9PS1_H 
#define FOE9PS1_H 
 
#define TRUE  1 
#define FALSE 0 
 
void __STARTUP(void);          
void _INT(void);               
void _TMR0(void);              
void _T0CKI(void);             
void _PIV(void);               
void main(void);               
#endif 
 

7.1.3.2 C File: foe9ps1.c 
 
#include <P17Cxx.H>          
#include "FOE9PS1.H"        
#include <STDDEF.H>        
#define Device_CLK  33000000    // Device Oscillator is 33 MHz 
 
unsigned int cnt = 0 
unsigned int ranreq; 
unsigned int ran; 
char done = 0; 
unsigned int cnt0, cnt1, cnt2, cnt3; 
/* 
FOE position 1: 0x33 
FOE position 2: 0x34 
FOE position 3: 0x35 
FOE position 4: 0x36 
FOE position 5: 0x37 
FOE position 6: 0x38 
FOE position 7: 0x39 
FOE position 8: 0x3A 
FOE position 9: 0x3B 
*/ 
 
// Address mapping 
rom unsigned exp1a[192] = { 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 



  

   
   
  102 

0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp1b[192] = { 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 
0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x83, 0x33, 0x33, 0x33, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned exp2a[192] = { 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp2b[192] = { 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned exp2d[192] = { 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 



  

   
   
  103 

0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF, 
0x84, 0x84, 0x84, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp3a[192] = { 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned exp3d[192] = { 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF, 
0x85, 0x85, 0x85, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp4a[192] = { 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 



  

   
   
  104 

0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp4b[192] = { 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp4c[192] = { 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF, 
0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x36, 0x36, 0x36, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned exp5a[192] = { 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF, 
0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
 
rom unsigned exp6a[192] = { 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 



  

   
   
  105 

0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp6b[192] = { 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp6c[192] = { 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF, 
0x88, 0x88, 0x88, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned exp7a[192] = { 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned exp7d[192] = { 



  

   
   
  106 

0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF, 
0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x89, 0x39, 0x39, 0x39, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp8a[192] = { 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp8b[192] = { 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned exp8d[192] = { 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 



  

   
   
  107 

0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x8A, 0x3A, 0x3A, 0x3A, 0xFF, 0xFF, 0xFF, 0xFF, 
}; 
rom unsigned exp9a[192] = { 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
rom unsigned exp9b[192] = { 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 
0x8B, 0x8B, 0x8B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0x3B, 0xFF, 0xFF, 0xFF, 0xFF 
}; 
 
rom unsigned *pexp1a; 
rom unsigned *pexp1b; 
rom unsigned *pexp2a; 
rom unsigned *pexp2b; 
rom unsigned *pexp2d; 
rom unsigned *pexp3a; 
rom unsigned *pexp3d; 
rom unsigned *pexp4a; 
rom unsigned *pexp4b; 
rom unsigned *pexp4c; 
rom unsigned *pexp5a; 
rom unsigned *pexp6a; 
rom unsigned *pexp6b; 
rom unsigned *pexp6c; 
rom unsigned *pexp7a; 
rom unsigned *pexp7d; 
rom unsigned *pexp8a; 
rom unsigned *pexp8b; 
rom unsigned *pexp8d; 
rom unsigned *pexp9a; 
rom unsigned *pexp9b; 



  

   
   
  108 

 
//initialization 
void __STARTUP(void) 
{ 
    DDRB = 0x55; 
    PORTB = 0; 
    PORTA = 0; 
    DDRC = 0; 
    PORTC = 0; 
    DDRD = 0xFF; 
    PORTD = 0; 
    DDRE = 0; 
    PORTE = 0; 
} 
 
// INT interrupt handler 
void _INT(void) 
{ 
      while (1)        
   {                
   }                
} 
 
// TMR0 interrupt handler 
void _TMR0(void) 
{ 
   while (1)        
   {                
   }                
} 
 
// T0CKI interrupt handler 
void _T0CKI(void) 
{ 
   while (1)        
   {                
   }                
} 
 
// PIV interrupt handler 
void _PIV(void) 
{ 
     while (1)        
   {                
   }                
} 
void main(void) 
{ 
    Install_INT(_INT);           
    Install_TMR0(_TMR0);         
    Install_T0CKI(_T0CKI);       
    Install_PIV(_PIV);           
 



  

   
   
  109 

    PORTAbits.RA2 = 0; // MSB of the receiver address 
    PORTAbits.RA3 = 1; // reset transceivers for stuck condition 
 
    while(1)                        { 
 while (done == 0) // Look for a transceiver request 
 { 
     cnt++; 
     if (cnt > 3) cnt = 0; 
     ranreq = cnt * 2; 
     switch (ranreq) 
     { 
  case 0: 
      if (PORTBbits.RB0 == 1)  
      {  
   PORTBbits.RB1 = 1; 
   done =1; 
   cnt0 = 0; 
       PORTBbits.RB1 = 0; 
      } 
      else 
   cnt0++; 
      break; 
  case 2: 
      if (PORTBbits.RB2 == 1) 
      {  
   PORTBbits.RB3 = 1; 
   done =1; 
   cnt1 = 0; 
       PORTBbits.RB3 = 0; 
      } 
      else 
   cnt1++; 
      break; 
  case 4: 
      if (PORTBbits.RB4 == 1) 
      {  
   PORTBbits.RB5 = 1; 
   done =1; 
   cnt2 = 0; 
   PORTBbits.RB5 = 0; 
      } 
      else 
   cnt2++; 
       break; 
  case 6: 
      if (PORTBbits.RB6 == 1) 
      {  
   PORTBbits.RB7 = 1; 
   done =1; 
   cnt3 = 0; 
   PORTBbits.RB7 = 0; 
      } 
      else 



  

   
   
  110 

   cnt3++; 
       break;   
     }      
 } 
 
//Reset transceivers at stuck condition 
 if ((cnt0 > 4999) || (cnt1 > 4999) || (cnt2 > 4999) || (cnt3 > 4999))  
 { 
     PORTAbits.RA3 = 0; 
     cnt0 = 0; 
     cnt1 = 0; 
     cnt2 = 0; 
     cnt3 = 0; 
     PORTAbits.RA3 = 1; 
 } 
 done = 0; 
 ran = ranreq / 2; 
 if (ran < 2) PORTEbits.RE0 = ran; 
 else PORTEbits.RE0 = ran - 2; 
        PORTEbits.RE1 = ran / 2; 
 switch (ranreq) 
 { 
     case 0: 
     case 6: 
  pexp1a = exp1a + PORTD; 
  PORTC = *pexp1a;     
         break; 
     case 2: 
     case 4: 
  pexp1b = exp1b + PORTD; 
  PORTC = *pexp1b; 
  break;       
 } 
 if (PORTC == 0x33) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
 switch (ranreq) 
 { 
     case 0: 
     case 4: 
  pexp2a = exp2a + PORTD; 
  PORTC = *pexp2a;     
         break; 
     case 2: 
  pexp2b = exp2b + PORTD; 
  PORTC = *pexp2b; 
  break; 
     case 6: 
  pexp2d = exp2d + PORTD; 
  PORTC = *pexp2d;     
   break;   



  

   
   
  111 

 }      
 if (PORTC == 0x34) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
 switch (ranreq) 
 { 
     case 0: 
     case 2: 
  pexp3a = exp3a + PORTD; 
  PORTC = *pexp3a;     
         break; 
     case 4: 
     case 6: 
  pexp3d = exp3d + PORTD; 
  PORTC = *pexp3d;     
   break;   
 }      
 if (PORTC == 0x35) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
 switch (ranreq) 
 { 
     case 0: 
  pexp4a = exp4a + PORTD; 
  PORTC = *pexp4a;     
         break; 
     case 2: 
     case 6: 
  pexp4b = exp4b + PORTD; 
  PORTC = *pexp4b; 
  break; 
     case 4: 
  pexp4c = exp4c + PORTD; 
  PORTC = *pexp4c;   
   break; 
 }      
 if (PORTC == 0x36) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
 
 pexp5a = exp5a + PORTD; 
 PORTC = *pexp5a; 
 if (PORTC == 0x37) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 



  

   
   
  112 

 
 switch (ranreq) 
 { 
     case 0: 
  pexp6a = exp6a + PORTD; 
  PORTC = *pexp6a;     
         break; 
     case 2: 
     case 6: 
  pexp6b = exp6b + PORTD; 
  PORTC = *pexp6b; 
  break; 
     case 4: 
  pexp6c = exp6c + PORTD; 
  PORTC = *pexp6c;   
   break;  
 }      
 if (PORTC == 0x38) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
 switch (ranreq) 
 { 
     case 0: 
     case 2: 
  pexp7a = exp7a + PORTD; 
  PORTC = *pexp7a;     
         break; 
     case 4: 
     case 6: 
  pexp7d = exp7d + PORTD; 
  PORTC = *pexp7d;     
   break;   
 }      
 if (PORTC == 0x39) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
 switch (ranreq) 
 { 
     case 0: 
     case 4: 
  pexp8a = exp8a + PORTD; 
  PORTC = *pexp8a;     
         break; 
     case 2: 
  pexp8b = exp8b + PORTD; 
  PORTC = *pexp8b; 
  break; 
     case 6: 
  pexp8d = exp8d + PORTD; 



  

   
   
  113 

  PORTC = *pexp8d;     
   break;   
 }      
 if (PORTC == 0x3A) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
 switch (ranreq) 
 { 
     case 0: 
     case 6: 
  pexp9a = exp9a + PORTD; 
  PORTC = *pexp9a;     
         break; 
     case 2: 
     case 4: 
  pexp9b = exp9b + PORTD; 
  PORTC = *pexp9b; 
  break; 
 }      
 if (PORTC == 0x3B) 
 {      
     PORTEbits.RE2 = 1; 
            PORTEbits.RE2 = 0; 
 } 
    } 
} 
 
 



  

   
   
  114 

 

8 Appendix C 
 
 

8.1 Circuit Biasing 
 

8.1.1 Simultaneous Synthesis of Complex and Translational Units 
 
 

TEDsndr3 

(Volts) 

ITIxcvr2  

(Volts) 

INTrcvr 

(Volts) 

Vprbias = 3.006 Vspon = 0 Vqua = 4.51 

Vhysbias = 4.66 Vqua = 3.48 Vop = 0.165 

Vthr = 2.493 Vtau = 1.016 Voff = 0 

Vngain = 0.181 Vleak = 0.091 Vfollbias = 0.808 

Vlimit = 1.785 Vtop = 0 AckPD = 0.996 

Vleak = 4.17 Voffset = 0.3 AckOrPU = 3.8 

Vnin = 0 Vthr = 1.572 AckPU = 3.97 

Vfollbias = 0 Vpd = 1.27 Vsync_pd = 1.672 

Vrpd = 5.09 Vrpd = 5.06 Vlref = 1.187 

Vdpd = 1.988 Vpu = 4.3 Vlbias = 0.987 

Vpub = 3.244 Vfollbias = 0 Voutref =3.231 

Vlref  = 0.209   

Vprref = 2.55   

 

 

The bias setting for Vqua of INTrcvr might have to be changed for other mappings 

to account for the change in incoming spike frequency range. 

 



  

   
   
  115 

 

9 Appendix D 
 

 

All files are in the directory c:\users\skarif\research\thesis9_28. 

 

9.1 Matlab Files to Generate Figures 
 

9.1.1 Figures of Results 
 
 

Matlab file name Generated Figures 

result4 Figure 4.8 - Figure 4.11 

result4p Figure 4.12 

rvvqua1 Figure 4.18 

rvrf1 Figure 4.20, Figure 4.22 

rvpixel3 Figure 4.23 

rfoe9 Figure 4.24 

rvesz5 Figure 4.27 

rvpixel1 Figure 4.28 

rves1 Figure 4.29, Figure 4.30 

rvew1 Figure 4.31, Figure 4.32 

rvws1 Figure 4.33 

rvws3 Figure 4.35, Figure 4.36 

rvww1 Figure 4.37 

rvww3 Figure 4.38, Figure 4.39 

 

 



  

   
   
  116 

9.1.2 Figures of Theoretical Predictions 
 

Matlab file name Generated Figures 

thvecade Figure 3.2, Figure 3.3 

plotthte Figure 3.5, Figure 3.6 

thvecadn Figure 3.7 

plotthtn Figure 3.9 

thvecadw Figure 3.10 

thvecadc Figure 3.11 

plotthrf6 Figure 3.15 

plotthtep1 Figure 3.17 

plotth1foe Figure 3.19 

plotth4foe Figure 3.21 

plotthte3 Figure 3.24 

plotthte5 Figure 3.25 

thperf1 Figure 4.6 

plotthn Figure 4.13 

plotthe Figure 4.14 

plotthc Figure 4.15 

plotthw Figure 4.16 

plotthtr Figure 4.17 

plotthrf Figure 4.21 

plotth9foe Figure 4.25 

 
 
 
 
 
 
 
 
 
 



  

   
   
  117 

9.2 Files of Figures 
 

File name Figure 

aer_modprot.eps Figure 2.1 

block3.jpg Figure 2.2 

ts3.jpg Figure 2.3 

ts3pix5.ps Figure 2.4 

trace.eps Figure 2.5 

itixcvr2.jpg Figure 2.6 

iti_blockdia1d.eps Figure 2.7 (a) 

iti_trace.eps Figure 2.7 (b) 

itipix5.ps Figure 2.8 

intlay.jpg Figure 2.9 

intrcvr.jpg Figure 2.10 

setup.jpg Figure 4.2 

exp1.jpg Figure 4.3 

rot1.jpg Figure 4.4 

movbar1.jpg Figure 4.5 

req4_1.jpg Figure 4.7 

rotart1.jpg Figure 4.34 

schematic3.sdb Figure 6.1 

celement.jpg Figure 6.2 

celemen4.jpg Figure 6.3 

delayelm.jpg Figure 6.4 

mux.jpg Figure 6.5 



  

   
   
  118 

 

10 References 
 

 

[1] J. H. Rieger and L. Toet, “Human visual navigation in the presence of 3D rotations,” 

Biol. Cybern. 52, 377-381 (1985). 

[2] W. H. Warren and D. J. Hannon, “Direction of self-motion is perceived from optical 

flow,” Nature (London) 336, 162-163 (1988). 

[3] W. H. Warren and D. J. Hannon, “Eye movements and optical flow,” J. Opt. Soc. 

Am. A 7, 160-169 (1990). 

[4] J. A. Crowell, C. S. Royden, M. S. Banks, K. H. Swenson, and A. B. Sekuler, “Optic 

flow and heading judgments,” Invest. Ophthalmol. Visual Sci. Suppl. 31, 522 (1992). 

[5] A. V. van den Berg, “Robustness of perception of heading from optic flow,” Vision 

Res. 32, 1285-1296 (1992). 

[6] J. A. Crowell and M. S. Banks, “Perceiving heading with different retinal regions 

and types of optic flow,” Percept. Psychophys. 53, 325-337 (1993). 

[7] W. H. Warren, D. R. Mestre, A. W. Blackwell, and M. W. Morris, “Perception of 

circular heading from optical flow,” J. Exp. Psychol. Hum. Percept. Perform. 17, 28-

43 (1991). 

[8] K. T. Turano and X. Wang, “Visual discrimination between a curved and straight 

path of self motion: effects of forward speed,” Vision Res. 24, 107-114 (1994). 

[9] J. J. Gibson, The Perception of the Visual World (Houghton Miffin, Boston, Mass., 

1950), Chap. 7, pp. 117-144. 

[10] E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. 

Electron Devices, vol. 44, no. 10, pp. 1689-1698, 1997. 

[11] T. Delbruck and C. Mead, “Analog VLSI phototransduction by continuous-time, 

adaptive, logarithmic photoreceptor circuits,” Tech. Rep. 30, Department of 

Computation and Neural Systems, California Institute of Technology, 1993. 



  

   
   
  119 

[12] R. Etienne-Cummings, J. Van der Spiegel, and P. Mueller, “A focal plane visual 

motion measurement sensor,” IEEE Trans. On Circuit and Systems I, vol. 44, no. 1, 

pp. 55-56, 1997. 

[13] R. A. Deutschmann and C. Koch, “Compact real-time 2-D gradient based analog 

VLSI motion sensor,” in Proceedings of the Int. Conf. On Advanced Focal Plane 

Arrays and Electronic Cameras, Zurich/Switzerland, 1998. 

[14] C. M. Higgins, R. A. Deutschmann, and C. Koch, “Pulse-based 2-D motion sensors,” 

IEEE Trans. On Circuits and Systems II, vol. 46, no. 6, pp. 677-687, 1999. 

[15] A. Stocker and R. Douglas, “Computation of smooth optical flow in a feedback 

connected analog network,” in Advances in Neural Information Processing Systems, 

M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds., Cambridge, MA, 1999, vol. 11, 

MIT Press. 

[16] C. M. Higgins and C. Koch, “A Modular Multichip Neuromorphic Architecture for 

Real-Time Visual Motion Processing,” Analog Integrated Circuits and Signal 

Processing, 24(3), September 2000. 

[17] C. A. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78, 

pp. 1629-1636, 1990. 

[18] C. Fermuller and Y. Aloimonos, “On the geometry of visual correspondence,” 

International Journal of Computer Vision, vol. 21, no. 3, pp. 233-247, 1997. 

[19] C. Fermuller and Y. Aloimonos, “Direct perception of three-dimensional motion 

from patterns of visual motion,” Science, vol. 270, pp. 1973-1976, 22 December 

1995. 

[20] C. Fermuller and Y. Aloimonos, “Qualitative egomotion,” International Journal of 

Computer Vision, vol. 15, pp. 7-29, 1995. 

[21] W. Burger and B. Bhanu, “Estimating 3-D egomotion from perspective image 

sequences,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 11, 

pp. 1040-1058, 1990. 



  

   
   
  120 

[22] M. J. Barth and S. Tsuji, “Egomotion determination through an intelligent gaze 

control strategy,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 5, pp. 1424-1432, 

1993. 

[23] R. Jain, “Direct computation of the focus of expansion,” IEEE Trans. Pattern 

Analysis and Machine Intelligence, vol. 5, pp. 58-64, 1983. 

[24] G. Indiveri, J. Kramer, and C. Koch, “Parallel analog VLSI architectures for 

computation of heading direction and time-to-contact,” in Advances in Neural 

Information Processing Systems, D. S. Touretzky, M. C. Mozer, and M. E. 

Hasselmo, Eds., Cambridge, MA, 1996, vol. 8, pp. 720-726, MIT. 

[25] I. McQuirk, “An analog VLSI chip for estimating the focus of expansion,” Tech. 

Rep. 1577, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 

1996. 

[26] R. A. Deutschmann and O. G. Wenisch, “Compressive computation in analog VLSI 

motion sensors,” in Proceedings of Deutsche Arbeitsgemeinschaft fur 

Mustererkennung, 1998. 

[27] C. M. Higgins and C. Koch, “An integrated Vision Sensor for the Computation of 

Optical Flow Singular Points,” Advances in Neural Information Processing Systems 

(NIPS) 11. 

[28] M. A. Mahowald, VLSI analogs of neuronal visual processing: a synthesis of form 

and function, Ph.D. thesis, Department of Computation and Neural Systems, 

California Institute of Technology, Pasadena, CA., 1992. 

[29] K. Boahen, “Retinomorphic vision systems,” in proceedings of the International 

Conference on Microelectronics for Neural Networks and Fuzzy Systems. IEEE, 

1996. 

[30] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie, “Silicon 

auditory processors as computer peripherals,” IEEE Trans. Neural Networks, vol. 4, 

no. 3, May 1993. 

[31] A. Mortara, E. Vittoz, and P. Verier, “A communications scheme for analog VLSI 

perceptive systems,” IEEE Journal of Solid State Circuits, vol. 30, no. 6, June 1995. 



  

   
   
  121 

[32] S. DeWeerth, G. Patel, M. Simoni, D. Schimmel, and R. Calabrese, “A VLSI 

architecture for modeling intersegmental coordination,” in Proc. Of the 17th 

conference on Advanced Research in VLSI, Ann Arbor, MI, 1997. 

[33] K. Boahen, NSF Neuromorphic Engineering Workshop Report, Telluride, CO, 1996. 

[34] P. Venier, A. Mortara, X. Arreguit, and E. Vittoz, “An integrated cortical layer for 

orientation enhancement,” IEEE Journal of Solid State Circuits, vol. 32, no. 2, pp. 

177-186, February 1997. 

[35] S. Grossberg, G. Carpenter, E. Schwartz, E. Mingolla, D. Bullock, P. Gaudiano, A. 

Andreou, G. Cauwenberghs, and A. Hubbard, “Automated vision and sensing 

systems at Boston University,” in Proc. Of the DARPA Image Understanding 

Workshop, New Orleans, LA, 1997. 

[36] N. Kumar, W. Himmelbauer, G. Cauwenberghs, and A. G. Andreou, “An analog 

VLSI chip with asynchronous interface for auditory feature extraction,” IEEE Trans. 

On Circuit and Systems II, vol. 45, no. 5, pp. 600-606, May 1998. 

[37] Ph. Hafliger, “An Asynchronous Address Event Mapping Architecture,” Submitted. 

[38] C. M. Higgins and C. Koch, “Multichip Neuromorphic Motion Processing,” 1999 

Conference on Advanced Research in VLSI, Atlanta, GA, 1998. 

[39] J. Kramer and G. Indiveri, “Neuromorphic vision sensors and preprocessors in 

system application,” In Advanced Focal Plane Arrays and Electronic Cameras 

(AFPAEC’98), Zurich, Switzerland, May 1998. 

[40] A. Mortara, “A pulsed communication/computation framework for analog VLSI 

perceptive systems,” In T. S. Lande, editor, Neuromorphic Systems Engineering, pp. 

217-228. Kluwer Academic, Norwell, MA, 1998. 

[41] K. Boahen, “A retinomorphic vision system,” IEEE Micro, 16(5):30-39, Oct. 1996. 

[42] M. Mahowald, “An Analog VLSI System for Stereoscopic Vision,” Kluwer, Boston, 

1994. 

[43] Z. Kalayjian, J. Waskiewicz, D. Yochelson, and A. Andreou, “Asynchronous 

sampling of 2-D arrays using winner-takes-all arbitration,” in IEEE International 

Symposium on Circuits and Systems, Atlanta, GA, 1996. 



  

   
   
  122 

[44] K. Boahen, “A throughput-on-demand 2-D address-event transmitter for 

neuromorphic chips,” in Proc. Of the 20th Conference on Advanced Research in 

VLSI, Atlanta, GA, 1999. 

[45] J. Kramer, R. Sarpeshkar, and C. Koch, “Pulse-based analog VLSI velocity sensors,” 

IEEE Trans. Circuits and Systems II, vol. 44, pp. 86-101, 1997. 

[46] J. Kramer, “Compact integrated motion sensor with three-pixel interaction,” IEEE 

Trans. Pattern Analysis and Machine Intelligence, vol. 18, pp. 455-460, 1996.

 


	Introduction
	Background
	Related Work
	Organization of the Thesis

	Hardware Architecture
	Background
	Multichip System
	Hardware Components
	Photosensitive Sender Chip
	Motion Transceiver Chip
	Integrating Receiver Chip


	Synthesis of Complex Motion Units
	Introduction
	Expansion-sensitive Unit
	Contraction-sensitive Unit
	Rotation-sensitive Units
	Varying Receptive Field
	Off-Centered FOE Tuning
	Larger FOE Region

	Experimental results
	Introduction
	Experimental Setup
	Power Consumption
	Performance
	Experiment 1: Simultaneous tuning to expansion, contraction, CCW and CW rotation and four directions of translational motion
	Setup
	Result

	Experiment 2: Expansion sensitivity while changing receiver threshold
	Setup
	Result

	Experiment 3: Varying receptive field size
	Setup
	Result

	Experiment 4: Effects of PIC speed and sequential mapping
	Setup
	Result

	Experiment 5: Expansion-sensitive units for 3X3 FOE positions
	Setup
	Result

	Experiment 6: Large and small expanding field
	Setup
	Result

	Experiment 7: Effects of receiver pixel mismatch
	Setup
	Result

	Experiment 8: Variation of expanding stimulus speed
	Setup
	Result

	Experiment 9: Variation of expanding stimulus width
	Setup
	Result

	Experiment 10: Variation of CCW rotating stimulus speed
	Setup
	Result

	Experiment 11: Variation of CCW rotating stimulus width
	Setup
	Result


	Conclusions
	Limitations
	Future Work

	Appendix A
	Detailed Schematic

	Appendix B
	PIC Programming
	Simultaneous Synthesis of Complex and Translational Units
	Header File: cmtrhf2.h
	C File:cmtrhf2.c

	Synthesis of the Expansion-sensitive Unit Only
	Header File: onlyexp1.h
	C File: onlyexp1.c

	3X3 FOE Positions
	Header File:foe9ps1.h
	C File: foe9ps1.c



	Appendix C
	Circuit Biasing
	Simultaneous Synthesis of Complex and Translational Units


	Appendix D
	Matlab Files to Generate Figures
	Figures of Results
	Figures of Theoretical Predictions

	Files of Figures

	References

