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Abstract

Intelligent systems with even the bare minimum of sophistication require extensive computational
power and complex processing units. At the same time, small insects like flies are adept at visual
navigation, target pursuit, motionless hovering flight, and obstacle avoidance. Thus, biology pro-
vides engineers with an unconventional approach to solve complicated engineering design problems.
Computational models of the neuronal architecture of the insect brain can provide algorithms for the
development of software and hardware to accomplish sophisticated visual navigation tasks. In this
research, we investigate biologically-inspired collision avoidance models primarily based on visual
motion. We first present a comparative analysis of two leading collision avoidance models hypothe-
sized in the insect brain. The models are simulated and mathematically analyzed for collision and
non-collision scenarios. Based on this analysis it is proposed that along with the motion information,
an estimate of distance from the obstacle is also required to reliably avoid collisions. We present
models with tracking capability as solutions to this problem and show that tracking indirectly com-
putes a measure of distance. We present a camera-based implementation of the collision avoidance
models with tracking. The camera-based system was tested for collision and non-collision scenarios
to verify our simulation claims that tracking improves collision avoidance. Next, we present a direct
approach to estimate the distance from an obstacle by utilizing non-directional speed. We describe
two simplified non-directional speed estimation models: the non-directional multiplication (ND-M)
sensor, and the non-directional summation (ND-S) sensor. We also analyze the mathematical basis
of their speed sensitivity. An analog VLSI chip was designed and fabricated to implement these
models in silicon. The chip was fabricated in a 0.18 µm process and its characterization results are
reported here. As future work, the tracking algorithm and the collision avoidance models may be
implemented as a sensor chip and used for autonomous navigation by intelligent systems.
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Chapter 1

Introduction

The already significant challenge of designing intelligent systems is often made harder for engineers
due to a trade-off between computational power and size. In artificial systems, packaging of sensors
and their respective processing elements in a small area often comes at the price of reduced function-
ality. However, biological systems balance the act of sensor performance and size regulation to near
perfection. This dissertation aims to augment our understanding of a biological system and develop
an engineering solution based on its principles. Specifically, we are interested in understanding the
biological mechanisms behind visually mediated obstacle avoidance and collision detection with the
goal of designing a self-navigating robotic system that can avoid obstacles in its path.

Robotic visual navigation is a complex task that requires data to be acquired from an image sen-
sor and processed in real time. Conventional computer architectures may be used for autonomous
navigation in many cases. However, they require fast analog-to-digital converters (ADCs) to com-
municate the data from a high-resolution sensor (such as a CCD array) to a serial digital processor.
They further demand a fast algorithm to process this data in order to perform realtime decisions.
In a system that is required to operate on a limited power budget, such as an autonomous robot,
the cost of high-speed data transfer and processing is often a limitation. An elegant alternative
approach to both sensory data acquisition and processing may be found in the insect visual system.
The sensors and the processing neurons in the insect brain are arranged in close proximity and data
from each sensor is processed in parallel. This system has survived and evolved over hundreds of
millions of years and provides us with highly optimized neuronal algorithms that can be used to
design architectures for autonomous navigation.

In the next few sections, we present a brief overview of the insect visual system, some of the
schemes that have been used to model motion detection and visual navigation in insects, and an
introduction to a branch of engineering that implements these models as VLSI chips and artificially
intelligent systems.

1.1 The insect visual system

The visual system is one of the most complicated processing architectures in the brain. It is no
surprise then that in most animals, including primates, more neurons are devoted to vision than
to any other sensory function (Zigmond et al., 1999). With approximately 106 neurons, the insect
brain is much simpler than that of primates, who have roughly 1011 neurons. This is also true
for the insect visual system as compared to the primate visual system. A simple organization
of the insect brain showing prominent layers of the visual system is shown in Figure 1.1. Most
insects have compound eyes with multiple light gathering units known as ommatidia. In flies, each
ommatidium consists of a lens that forms an image onto the tip of the rhabdom, a light guiding
structure in the photoreceptor cells containing photo pigments (Land and Fernald, 1992). This
visual information is transduced into electrical signals by the photoreceptor cells at the level of the
retina. This transduced signal from the retina is processed by three layers of the visual ganglia:
the lamina, the medulla, and the lobula complex. In flies, the lobula complex is further subdivided
into the lobula and the lobula plate. Lobula plate neurons have been studied extensively and have
been implicated in directional motion detection (Hassenstein and Reichardt, 1956; Reichardt, 1961;
Egelhaaf and Borst, 1993; Borst and Egelhaaf, 1989), small-field target tracking (Land and Collett,
1974; Reichardt et al., 1989; Egelhaaf, 1985a, 1985b, 1985c, 1990) and collision avoidance (Borst
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Figure 1.1. Diagram of the fly visual system. The outermost layer of the insect eye, the retina, has
photoreceptor cells. This layer is followed by three synaptic regions: the lamina, the medulla, and the
lobula complex which comprises the lobula and the lobula plate (not shown). This is followed by the central
brain of the insect. The fly nervous system has roughly 106 neurons. Reproduced without permission from
Strausfeld (1976).
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and Bahde, 1986; Tammero and Dickinson, 2002a, 2002b). A recent neuronally based computational
model suggests that non-directional motion may be detected earlier in the visual pathway, at the
level of the medulla, than directional motion (Higgins et al., 2004). This non-directional motion has
speed dependent response for a range of spatial frequencies and may subserve the speed dependent
behavior of the insects (Higgins, 2004).

Several computational models have been proposed to explain how insects extract directional
motion information from their surroundings. These schemes have been used to model the response
of cells in the lobula and the lobula plate that respond to motion in a specific direction. We have
broadly classified these models under three categories detailed below.

1.1.1 Optical-flow based models

Gibson (1950) first postulated that an optic array is used in the “steering of locomotion”. An
optic array was defined as a brightness pattern or texture incident on the eye of an observer. A
continuously changing optic array was proposed to give rise to an optical flow field (Lee, 1980).
The optical flow is mathematically defined as the instantaneous velocity of the brightness pattern
at each point in an image (Horn and Schunck, 1981). However, optical flow cannot be computed at
each point in the image independent of its neighboring points without additional constraints. This
is because the velocity of a point in a plane has two degrees of freedom, whereas the change in the
image brightness (being a scalar) has only one degree of freedom (Horn and Schunck, 1981). This
problem may be overcome by adding constraints to the original problem, such as assuming that the
total image brightness remains constant as the image moves. This allows for a unique solution to
be found for the velocities at each point in the image.

There are some difficulties with this methodology. It has been shown that the optical flow
computed on the image may not match the actual motion for non-uniform illumination (Horn,
1986). Verri and Poggio (1989) have further shown that the actual motion field and the optical flow
field generally do not match. They match under very specific illumination conditions and only for
smooth objects under translatory motion. Nevertheless, it has been argued by the same authors that
meaningful information about the actual motion may be interpreted from the qualitative properties
of the optical flow. Such qualitative properties may be found by associating the optical flow with
a dynamical system. The fixed points or singularities of a dynamical system may then be used to
extract useful motion properties from the optical flow, like the focus of expansion (Poggio and Verri,
1987; Verri et al., 1990).

Figure 1.2 shows typical optical flows experienced by an observer under translatory and rotatory
motion. In the case of translation (Figure 1.2a), the observer sees an expanding flow field with a
singularity (S) along the axis of translation. Thus, without regard to the quantitative values of the
flow field, an expansive optical flow suggests a translatory motion towards the singularity, which
denotes the focus of expansion. Figure 1.2b shows the optical flow field generated during rotation.
Here, no singular point exists in the view field of the observer, hence the horizontal flow field. Parallel
motion vectors qualitatively suggest that the observer is rotating with respect to the surrounding
in a direction opposite to the direction of the flow field. Similarly, a discontinuity in the optical
flow along a contour suggests the presence of an object and may be used to distinguish a target
from its background. Several authors have suggested that living organisms, including insects, use
this information for navigating in complex and cluttered environments (Prazdny, 1980; Adiv, 1985;
Warren and Hannon, 1988; Poggio et al., 1989; Bulthoff et al., 1989; Egelhaaf and Borst, 1993).

1.1.2 Correlation-based models

Exner (1894) first proposed the idea of a correlation-based motion detector to explain the vivid
impression of apparent motion in humans by the sequential flashing of two neighboring stationary
light spots. In 1956 Hassenstein and Reichardt developed a correlation-based model to explain the
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Figure 1.2. Optical flow fields. (a) The optical flow field generated due to translation. S denotes the
location of the singularity. (b) The optical flow field generated due to rotation.

rotatory large-field motion response of the beetle Chlorophanus to a rotating visual stimulus. This
large-field motion response is often termed the optomotor response. The Hassenstein-Reichardt (HR)
model proposes that the two dimensional visual field is covered by local motion detectors, also known
as elementary motion detectors (EMD), each evaluating a spatio-temporal cross-correlation between
the light intensity fluctuations between two neighboring photoreceptors. The response of a spatio-
temporal frequency tuned model, like the HR model, is dependent on both the spatial frequency
and the temporal frequency components of the visual stimulus being used to elicit the response.

The HR model with an additional temporal high-pass filter is shown in Figure 1.3 (Higgins et al.,
2004). Each motion detector receives its inputs from photodetector units followed by two temporal
filters and a multiplication unit, arranged in a mirror-symmetric fashion. The two temporal filters
successively perform a high-pass and a low-pass filtering operation. The high-pass filter enhances the
sharp temporal features of the image. The low-pass filter acts as a delay. The delayed and undelayed
responses from two adjacent photoreceptors are multiplied to perform a correlation between the two.
The difference between two such adjacent multiplication units is spatio-temporal frequency tuned and
is directionally selective along the orientation of the photoreceptor axis. Electrophysiological data
from wide-field lobula plate neurons in the insect visual system also known as tangential cells matches
the response of an HR model (Reichardt et al., 1983; Egelhaaf, 1985a; Egelhaaf and Borst, 1993;
Egelhaaf et al., 1993).

The HR model has been elaborated by adding temporal and spatial filters before the correlation
operation (van Santen and Sperling, 1985). The addition of the spatial and temporal filters makes the
response of this model detect motion even in the presence of noise. Adelson and Bergen (1983) have
proposed a spatio-temporal energy based model that is mathematically equivalent to the elaborated



14

X

OHR

HPF

PD

LPF

HPF

PD

LPF

X

+ -Σ

X

Figure 1.3. The Hassenstein-Reichardt (HR) model. Visual input is filtered by high-pass filter (HPF) units
to remove all sustained responses from the photoreceptor (Higgins et al., 2004). This response is correlated
(×) with a delayed response (low-pass filter (LPF) unit acts as a delay) from the adjacent photoreceptor
output. The responses from two adjacent correlators are subtracted (Σ), and this output is direction selective
(OHR) such that its response magnitude is positive for stimulus motion in one direction and negative in the
other.
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Figure 1.4. Neuronally based elaborated EMD model. RHPF unit indicates relaxed high-pass filter, HPF
a high-pass filter, and LPF a low-pass filter. S represents a summation. Identified neurons are indicated at
each processing stage. See text for details. Reproduced without permission from Higgins et al. (2004).

HR model. This system has been used to model the motion response of a primate cortical complex
cell. Verri and Poggio (1989) have argued that biological organisms may use spatio-temporal based
models instead of the optical flow fields to estimate the qualitative properties of the actual motion.
Based on the above models, several schemes have been proposed to explain complex navigational
strategies used by insects (Virsik and Reichardt, 1976; Reichardt et al., 1983; Borst and Bahde, 1986;
Reichardt et al., 1989; Tammero and Dickinson, 2002a; Higgins and Pant, 2004b).

1.1.3 Neuronally based EMD model

A neuronally based small-field elementary motion detector model was recently proposed by Higgins
et al. (2004). This model is based on a subset of neurons from the photoreceptors through the
lamina (amacrine (Am), monopolar L2, and T1 cells), the medulla (transmedullary Tm1 and Tm9
cells), and the lobula (inhibitory interneurons and T5 cells) in the fly brain. Figure 1.4 shows
the various computational units in the model along with identified neurons implicated for those
specific computations. A photoreceptor converts incident light into signals that are processed by
amacrine and lamina monopolar cells. The synapse between the amacrine and T1 cell is modeled
as a sign-inverting ‘relaxed’ high-pass filter (RHPF) (Higgins et al., 2004) that retains a portion
of the sustained response while high-pass filtering the input signal. The activity of an L2 cell is
implemented as a sign-inverting high-pass filter (HPF). The response of the T1 cell is modeled as
a sum of two low-pass filtered (LPF) amacrine cells. A Tm1 cell sums the response from the L2
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and the T1 cells. A T5 cell sums the response of the Tm1 cell with a sign-inverted response of a
Tm9 cell that is modeled as a low-pass filter (LPF) unit. The activities of two adjacent T5 cells are
mutually inhibited by the inhibitory interneuron. The output of the T5 cell is directional and feeds
to the lobula plate tangential cells.

The neuronally based EMD model is consistent with the HR model and may be used to explain
electrophysiological data from lobula plate tangential cells (Rivera-Alvidrez, 2005). However, there
are some major differences between the two models. While the HR model does not specify how
the correlation-based model is actually implemented in the brain, the neuronally based EMD model
specifies anatomical equivalents to the different subunits. Also, the response of the HR model is
dependent on the spatio-temporal frequency and not the speed of the object in its visual field. The
response of the Tm1 unit in the neuronally based EMD model, on the other hand, is speed dependent
for a range of spatial frequencies (Rivera-Alvidrez, 2005). It has been reported that honeybees use
image speed to center themselves while flying through a tunnel or landing on a flat surface (Srinivasan
et al., 1991, 2000). There is also evidence that they may be using non-directional motion during
navigation (Srinivasan et al., 1993). The neuronally based EMD model may implicitly compute a
non-directional motion output that is also speed dependent (Higgins, 2004).

1.1.4 Contrast saturation

The biological motion detection models described for the fly brain suffer from a common problem.
Their response magnitude is dependent on the contrast of the visual input. For the correlation-based
models, the response is dependent on the square of the contrast. For the neuronally based EMD
model, the response magnitude is directly proportional to the stimulus contrast. Insects solve this
problem by employing contrast saturation in the visual system. This mechanism acts so that the
response of the insect visual system is dependent on the contrast of the visual input for a very small
range, outside of which it saturates. This has been incorporated into elaborated models based on
the correlation and neuronally based EMD model (Harris et al., 2000; Rivera-Alvidrez and Higgins,
2005).

All three of the above described motion detection schemes are often used to model the visual
navigation behavior of insects. In the next section, we present a brief account of these models and
their robotic implementations.

1.2 Visual navigation

Visual navigation requires an interaction between visual and motor systems. The visual information
from a scene needs to be parsed by the insect brain to extract structural information about its
surroundings. This information must then be used by the motor system of the insect to navigate in
its environment. Several navigational schemes have been suggested based on optical flow informa-
tion (Warren and Hannon, 1988; Mallot et al., 1991; Krapp and Hengstenberg, 1996). In addition,
schemes have been proposed employing lobula plate tangential cells. It has been suggested that the
vertical system (VS) neurons in the lobula plate of the fly act as matched filters. One navigation
scheme based on the VS neurons matches the optical flow field experienced by the fly with stereotyp-
ical translatory and rotatory optical flows to compensate for self motion (Franz and Krapp, 1998).
Navigational subsystems have also been proposed that utilize correlation-based motion models. Re-
ichardt et al. (1989) have developed a computational model based on the HR model to describe how
insects distinguish between an object of interest and the surround. Borst and Bahde (1986) have
described an HR model based scheme to explain the landing behavior of flies. This model has been
elaborated by Tammero and Dickinson (2002b) to explain landing and avoidance response in flies.

Some obstacle avoidance and escape response models have also been proposed that do not utilize
motion. Rind and Simmons (1992) have developed a neural network based on the response of the
Lobula Giant Movement Detector (LGMD) and the Descending Contralateral Movement Detector
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(DCMD) neurons in the locust brain. This non-directional model utilizes edge detectors, and re-
sponds strongly to approaching objects that trigger an escape response in the locust. Laurent and
Gabbiani (1998) have described a competing collision detection model based on the same neurons.
They have also argued that the same model may explain the response of neurons in the nucleus
rotundus of the pigeon brain. Another set of navigational schemes based on non-directional motion
have been proposed by Srinivasan et al. (1993). They have shown that honeybees do not use di-
rectional motion information while flying in the center of a tunnel, but rather use non-directional
image speed information. The same has been shown for distance calculation (odometry) and landing
behavior in bees (Srinivasan et al., 1996, 2000). It has also been reported that two distinct pathways,
one directional and the other non-directional, may be behind the optomotor and the image-speed
computation, respectively (Srinivasan et al., 1993). The HR model is widely used to represent the
pathway that exhibits the optomotor response. However, the response of this model is dependent on
the spatial and temporal frequency, and not the speed of the stimulus (Srinivasan et al., 1993). A
non-directional model that is based on the transmedullary Tm1 cells in flies (Higgins, 2004; Rivera-
Alvidrez, 2005) may represent the pathway that computes image speed. This model may therefore
be used to explain the centering, odometry, and landing behavior of the honeybees (Higgins, 2004;
Rivera-Alvidrez, 2005).

Robotic implementations of the biological models based on optical flow have been devised and
shown to be successful in simple scenarios (Weber et al., 1997; Verschure, 1998; Huber and Bülthoff,
2002). LGMD neuron based robotic systems (Blanchard et al., 2000; Santer et al., 2004; Stafford et
al., 2007b) and those based on the HR model (Huber and Bülthoff, 1998; Harrison, 2005) have also
been executed with limited success.

A parallel effort has been going on in the computer vision community to come up with ‘intelligent’
navigational schemes not based on biological models. For collision detection, several optical flow
based algorithms have been described (Lee, 1980; Ancona and Poggio, 1995). It has been argued that
if the observer is active (a sensor that can adjust its orientation between two frames) as opposed to
passive (a fixed sensor), the problem of extracting motion information from the optical flow becomes
much simpler (Bajcsy, 1985; Adiv, 1985; Aloimonos et al., 1988; Bandopadhay and Ballard, 1991).
Mathematical models have been proposed for binocular observers which utilize tracking (Aloimonos
et al., 1988). However, they require exact computation of several parameters based on the motion
of the object and may not be usable for real-time systems. Monocular observer based algorithms
have also been proposed (Fermuller and Aloimonos, 1992). However, the implementation of such
mathematical algorithms for an active viewer have only been shown for very simple and controlled
scenarios (Fermuller and Aloimonos, 1993). In this dissertation, we focus on a simple monocular
agent which can detect collision in non-trivial scenarios.

In the next section, we present a brief account of the biologically inspired artificial sensors that
have been implemented as VLSI architectures.

1.3 Neuromorphic Engineering

Neuromorphic Engineering applies the design strategies of neurobiological systems to electrical en-
gineering. Inspiration is taken from neurobiological circuits and models which are implemented
through analog building blocks and novel circuits to design ‘intelligent’ systems. Mead (1989) pio-
neered the field by implementing neural circuits in silicon hardware and one of the first examples
was an analog circuit that mimicked a spiking neuron (Mahowald and Mead, 1991). Visual, audi-
tory, and other bio-sensory models have since been successfully implemented (Andreou et al., 1991;
Mahowald and Mead, 1991; Horiuchi et al., 1991; Sarpeshkar et al., 1993; Delbruck, 1993; Etienne-
Cummings et al., 1993; Lazzaro et al., 1993; DeWeerth and Morris, 1994; Kramer et al., 1995;
Liu, 1996; Lazzaro and Wawrzynek, 1997; Harrison and Koch, 1998; Kumar et al., 1998). Vi-
sual motion based models have been the most widely implemented sensory models. As these
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systems became more complex, the computation was divided among several chips to implement
modular architectures (Higgins and Koch, 1999; Indiveri et al., 1999; Higgins and Shams, 2002;
Ozalevli and Higgins, 2005). Several authors have implemented a biologically inspired asynchronous
communication protocol to communicate between chips in a multi-chip system (Boahen, 1998;
Kalayjian and Andreou, 1997; Landolt et al., 2001). A thorough analysis of the fundamental issues
encountered in the design of motion processing architectures is reported in Sarpeshkar et al. (1996).
Higgins et al. (2005) have presented a comparative study of three different motion detection models
under similar test conditions. Biomimetic computational architectures have also been successfully
implemented as analog VLSI chips for target tracking, time-to-collision computation, and collision
detection (Etienne-Cummings et al., 1996; Indiveri et al., 1996, 2002; Miller and Barrows, 1999; Ho-
riuchi and Niebur, 1999; Etienne-Cummings et al., 2000; Higgins and Pant, 2004a; Harrison, 2005).
The particular attraction of the analog circuit architecture is that it can be used to implement a
neuronal system in continuous time, the way processing actually happens inside a neuron. At the
same time, an analog chip implemented in the subthreshold regime of the MOSFET consumes little
electrical power. Therefore, it is well suited to be used as a sensor in an autonomous system.

In the next section, we present an outline of the work that we will describe in this dissertation.

1.4 Summary of the dissertation

In this dissertation, we present biomimetic models that may be used in the design of intelligent
systems. The biological models have an advantage over their non-biological counterparts. They
present elegant and compact design methodology as compared to complicated and computation-
intensive computer algorithms. We describe the problem of autonomous navigation, specifically
focusing on biological collision avoidance models. We present a comprehensive simulation study of
two representative biological collision detection models in Chapter 2. The two models have been
chosen for their simple design that is suitable for implementation as a real-time artificial system.
In Chapter 3, we mathematically analyze these models and present elaborations to these models
based on the idea of active vision. Fermuller and Aloimonos (1992) have shown that tracking may
make the computation of time-to-collision feasible with only the optical flow information. However,
due to the inherent problems in computing optical flow this algorithm may not be able to detect
collision under real world scenarios. Correlation-based models, on the other hand, may be used
to compute spatio-temporal frequency tuned responses in a precise manner. These responses are
also qualitatively similar to the optical flow field (Verri and Poggio, 1989) and therefore, correlation-
based models may be used instead of the optical-flow based models. The biological collision detection
models described in Chapter 3 are based on spatio-temporal frequency based models. We use the
tracking-based approach to improve the collision detection models and present simulation results of
these elaborated models. In Chapter 4, we present a physical implementation of the two tracking-
based collision detection models. We present the results of this system for collision and non-collision
scenarios and compare the two collision detection models based on their performances.

Collision avoidance may also be achieved by determining the distance of an object from the
observer. This may be accomplished by utilizing relative speed of objects in a visual scene to
calculate relative depth. Navigation in honeybees has been argued to be controlled by a similar
image speed computation (Srinivasan et al., 1991, 1996; Zhang et al., 1993). In Chapter 5, we
simplify two non-directional motion models derived from the neuronally based EMD model whose
response is speed dependent, and present their simulation results. The speed response of these
models are independent of a range of spatial frequencies of the visual stimulus. Based on these
models, we present the design of an analog VLSI sensor chip and its characterization results in
Chapter 6. This non-directional speed sensor may be utilized in estimating the relative depth of an
object and may be used in the design of autonomously navigating systems. Finally, in Chapter 7,
we discuss the performance issues related to our work and present ideas for future work.
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Chapter 2

A comparative study of biological collision avoidance

models

Biological organisms from insects to primates display a stereotypical escape response when an ob-
ject in their visual field expands rapidly, a phenomenon termed ‘looming’. This response must
be distinguished from an obstacle avoidance response. The escape response is a reflexive reac-
tion to an imminent danger, while an obstacle avoidance response is a navigational strategy used
under normal circumstances to avoid direct collisions (Reynolds, 1999; Cuadri et al., 2005a). In
biological systems, the escape response is often mediated by a direct path between the sensory
and the motor system (Rind and Simmons, 1992; Laurent and Gabbiani, 1998). Visual obstacle
avoidance, on the other hand, is a computationally involved process based on optical flow infor-
mation that may lead to a variety of behaviors (Land and Collett, 1974; Reichardt et al., 1989;
Srinivasan and Zhang, 1997). In our effort to design an intelligent system that may autonomously
navigate in its environment, we perform simulation studies of both the escape and obstacle avoid-
ance models described for the insect visual system. Obstacle avoidance based navigational models
are discussed in Chapters 5 and 6. In the next few chapters, we simulate the escape response based
models that have been proposed for collision detection for collision and non-collision scenarios. We
term these models collision avoidance models and present their details in the following section.

2.1 Collision avoidance models

We have focused on three leading neuronal models hypothesized to underlie collision avoidance. The
first model that we have considered is based on the vertical system (VS) neurons in the fly brain.
These neurons have been hypothesized to supply visual cues for the control of head orientation,
body posture, and flight steering (Borst, 1990; Krapp et al., 1998). This scheme is based on a
matched filter approach (Franz and Krapp, 1998), whereby motion information is filtered by a set
of neurons to extract information for specific tasks, including collision avoidance. A matched filter
based collision avoidance model was recently proposed by Tammero and Dickinson (2002a) based on
their behavioral studies of fruit flies. We will call this model the Spatial and Temporal Integration
(STI) based model and describe it in Section 2.2.

The other two models that we describe are based on two of the most studied neurons mediating
collision avoidance in insects. These are the Lobula Giant Movement Detector (LGMD) and the
Descending Contralateral Movement Detector (DCMD) neurons (Rind, 1984; Milde and Strausfeld,
1990; Rind and Simmons, 1992; Hatsopoulos et al., 1995). Rind and Bramwell (1996) have modeled
the response of the LGMD neuron using a neural network. We refer to this model as the Rind model
and describe it in Section 2.3.1. A competing mathematical model based on the response of the
same two neurons has been described by Laurent and Gabbiani (1998). We refer to this model as
the η-function based mathematical model, which is discussed in Section 2.3.2.

2.2 The spatial and temporal integration based model

A model for collision avoidance and landing response in the fruit fly Drosophila melanogaster was
recently proposed by Tammero and Dickinson (2002a). This model is an elaboration of a scheme
based on the spatial and temporal integration of small-field motion units, proposed by Borst and
Bahde (1986), to explain the landing response of the housefly. Borst and Bahde studied the stereotyp-
ical leg extension response of the fly while presenting an expanding visual stimulus. They concluded
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that when the expansion output exceeds a threshold, the fly extends its legs to land. Tammero and
Dickinson have elaborated this model to account for both landing and collision avoidance. As shown
in Figure 2.1, the STI model consists of an array of Hassenstein-Reichardt (HR) type correlation-
based motion detectors (Reichardt, 1961) that compute a qualitative representation of the optical
flow field (Verri and Poggio, 1989). The visual field is separated into three sub-fields: left, center,
and right. In a two dimensional (2D) version of this model, the outputs from individual HR detectors
in each sub-field are filtered into rightward, leftward, upward, and downward motion components.
These motion components are then spatially combined such that the output in each of the four quad-
rants represents a net outward motion or expansion (see Figure 2.1ii). These expansion components
are temporally integrated by a leaky-integrator unit. In the left and right sub-fields, the expansion
on one side (say, left) is subtracted from the expansion on the other side (right). In the central
sub-field, the expansion output remains unchanged. The output in each sub-field is compared with
a threshold to generate either a landing response (based on the response of the central sub-field),
or an avoidance response (based on the responses of the left and right sub-fields). If the response
on the right side is greater than the left side, the fly turns leftwards and vice versa. The expansion
response that triggers a landing response in the fly may also be used to detect a direct collision.
Harrison (2005) has recently adapted this model into an analog VLSI chip showing reasonable per-
formance. A robot mounted with two such VLSI sensors was also designed and the performance of
this robot was tested for navigational tasks. It was shown that the robot was able to navigate with
few collisions. However, when and why the collisions occurred was not elaborated. In this chapter,
we investigate the STI model by presenting it with real-world videos of collision and non-collision
scenarios to explore the shortcomings of the model. Since this model has been extensively tested
for artificial stimuli and real-world videos (Harrison, 2005), we have not duplicated those results in
this chapter. Here, the model has been simulated for the most complicated videos of collision and
non-collision scenarios and the results have been compared with other schemes.

2.3 LGMD-DCMD neurons based models

In this section, we describe the two models based on the LGMD-DCMD neurons in the locust brain.

2.3.1 Rind et al’s LGMD based neural network

Rind and Bramwell (1996) proposed an LGMD-DCMD neuron based model for collision avoidance
in a locust. The DCMD neuron has a one-to-one synaptic connection with the LGMD neuron such
that a spike in the LGMD elicits a spike in the DCMD (Rind, 1984). The responses of these neurons
have been well characterized (Simmons and Rind, 1992; Hatsopoulos et al., 1995). Intracellular
electrophysiological data recorded from the DCMD neuron show that it responds strongly to ex-
panding stimuli, but not to sustained motion. Rind and Simmons (1992) recorded extracellularly
from the DCMD neuron and reported that it also responds to novel initiation of motion, but not to
slow lateral motion. Based on these recordings, Rind and Bramwell (1996) proposed a four layered
neural network that mimics the biological data very closely (Figure 2.2a). The first layer maps the
visual scene to an array of photoreceptors (P units). The photoreceptors have been assumed to be
edge detectors. Each photoreceptor responds to a change in the illumination level in its visual field
as an ON/OFF response and passes this activity to a second layer. This layer has an excitatory
(E) unit and an inhibitory (I) unit. The E and I units are followed by a third layer of summation
(S) units. An S unit receives excitatory input from the E unit in the same retinotopic location,
and inhibitory inputs from I units of its next and next-to-next neighbors. In all, an S unit has
twelve inhibitory inputs (see Figure 2.2b) and one excitatory input. The input from the I units are
weighted according to their relative position with respect to the S unit. The nearest six I units
are weighted by a factor of 1/6, while the further six units are weighted by a factor of 1/12. Time
delays of ∆ and 2∆ are associated with the nearest and next-nearest I units. All the S units project
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HR Detector

Figure 2.1. Tammero and Dickinson’s model for collision avoidance and landing response. (i) The two
dimensional motion field is computed by correlation-type (HR) motion detectors. (ii) Spatial aggregation
of this local information is performed in the leftward, central and rightward regions of the visual field.
(iii) This output is temporally integrated to determine the global motion as seen by a fly. (iv and v) The
output is compared with a threshold and for lateral motion, a collision avoidance maneuver is elicited. If
the expansion is in the central region of the visual field, a landing response is generated. Figure reproduced
without permission from Tammero and Dickinson (2002a).
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a)

b)

Figure 2.2. Rind and Bramwell’s neural network architecture. (a) The four processing layers of the neural
network in 1D. P units represent the photo-transduction layer, followed by an excitatory and an inhibitory
layer (E and I units). S units aggregate response from E and lateral I units forming the third layer of the
network. All the S units project upon an LGMD unit, the fourth layer of the network. The LGMD unit
also receives a feed-forward inhibition input from an F unit which gets activated when a certain number
(∼50) of P units respond together. (b) 2D connections between 12 neighboring I units and a S unit.
Reproduced without permission from Cuadri et al. (2005a).
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upon an LGMD unit that forms the fourth layer of this network. The LGMD unit also receives an
inhibitory input from a single F unit. The F unit constitutes a feed-forward inhibition pathway and
is triggered when a sudden burst of activity is detected by a fixed (∼50) number of P units. This
prevents a sudden change in the illumination from triggering a collision avoidance response. The
LGMD unit computes the sum of all the S units, and fires when this sum exceeds a threshold. A
race between the central excitatory and lateral inhibitory inputs dictates whether or not the LGMD
unit will trigger a collision avoidance response. Since the computations in this neural network are
performed locally in the S units, it may not distinguish between an approaching object and a fast
horizontally translating object as long as the sum of the S units exceeds the threshold. It has been
suggested that this is not a problem in naturalistic scenarios. In nature, a horizontally translating
object usually expands at a much slower rate on the retina compared to an approaching obstacle.
Thus, the horizontal motion would elicit a much smaller response from the E units (Cuadri et al.,
2005a). The Rind model relies on the lateral inhibition from the neighboring I units to suppress this
excitatory input from triggering the S unit. However, in the case of a collision scenario the expansion
is so rapid that the lateral inhibition network loses the race to the E units and the LGMD unit is
able to trigger a collision avoidance response. The delays between the I and the S units are critical
in this respect. They can be optimally chosen such that the LGMD unit is able to detect a collision
scenario from a horizontal translation. All the layers in this model also have a short-term memory
(persistence) associated with them. Santer et al. (2004) have shown that this persistence is critical
to the performance of this model. We have simulated three different versions of the Rind model in
search of a reliable collision avoidance scheme and we present their details in Section 2.4.2.

2.3.2 The η-function based mathematical model

A competing model, also based on the LGMD and DCMD neurons, was proposed by Hatsopoulos et
al. (1995). Unlike what was reported by Rind and Simmons (1992), the data recorded by Hatsopoulos
et al. suggests that the response of the DCMD neuron peaks and then falls off at a fixed delay after
the angle subtended by a looming object has exceeded a threshold. This response is invariant to the
actual size, speed, shape, or angle of approach of the object (Gabbiani et al., 2001). This model has
been elaborated by Laurent and Gabbiani (1998) to also explain data from the nucleus rotundus,
an area in the brain of a pigeon (Sun and Frost, 1998). This model utilizes the near-exponential
growth in the size of an approaching obstacle to generate a collision avoidance response. In a one-
dimensional (1D) case, the response of the LGMD and DCMD neurons to an approaching object
of size d subtending an angle θ(t) and moving at a speed v has been formulated in terms of the
η-function (see Figure 2.3a). This model defines t <0 as time before collision and t=0 as the time
of expected collision. The angle subtended by the object on the retinal plane can be computed by
simple trigonometric calculation to be:

θ(t) = 2 tan−1

(
d/2
v · t

)
(2.1)

An approaching object’s angular size and its rate of change grows near-exponentially on the
retinal plane (see Figure 2.3b). Taking the derivative of θ(t), we get:

θ̇(t) = 2 · d/2v

t2 + (d/2v)2
(2.2)

This rate of angular expansion along with the angular size are hypothesized to be controlling the
DCMD activity. This activity of the DCMD neuron is modeled as:

η(t) =
θ̇(t)

eα·θ(t)
(2.3)
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Figure 2.3. The η-function based computational model. (a) An object of size d approaching at a speed v
subtends an angle θ upon the eye. (b) Time course of angle θ(t) and its rate of change ρ(t) during approach.
(c) Time course of η(t), τ(t) and 1/τ(t) during approach. Reproduced without permission from Laurent and
Gabbiani (1998).

where α is a parameter that sets the threshold at which the angular size of the object starts to
inhibit the DCMD neuron. The angular expansion builds up as the object approaches, increasing
the response of the DCMD neuron along with it. However, when the object’s angular extent exceeds
a threshold (θthr), the denominator of the η-function causes the neuron’s firing rate to peak and
then decay exponentially. α is modeled by the following equation:

tan
(

θthr

2

)
=

1
α

(2.4)

However, for this scheme to work, the insect must be able to compute the size of an approaching
obstacle, and also be able to detect the peak firing rate of a neuron. Both of these calculations are
non-trivial and require computational time that may not be available in collision scenarios (Laurent
and Gabbiani, 1998). Also, the peak signal represents the angular size and not the actual size.
Thus, a large object farther away would signal the same response as a smaller object that is nearby.
This implies that less time will be available to escape from a fast-moving near object. This problem
can be resolved by computing how much time is left before collision. Using this model, Laurent
and Gabbiani have calculated a time-to-contact (τ) variable. As the name suggests, this variable
represents the time left before a looming object will collide with the observer. Using a small angle
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approximation for θ(t), the time-to-contact variable is calculated as:

τ(t) ≈ θ(t)
θ̇(t)

(2.5)

Figure 2.3c shows the time course of the η-function and the variable 1/τ(t) during an approach.
This mathematical model differs from the Rind model in many ways, even though both are based

on the response of the same LGMD-DCMD neurons. The Rind model extracts edge information
from the activity of the photoreceptors (P layer). The number of photoreceptors that get activated
(size information) and how fast this activity spreads (edge expansion rate or the speed of approach)
dictate the response of this model. The η-function, on the other hand, requires both the peak firing
rate and the rate of change of the angular size to compute the collision avoidance response. However,
the η-function based model does not describe a methodology as to how this information is available
to the LGMD system. Another important distinction between the Rind model and the η-function
based model is the manner in which the size of the object affects the response of the system. The
η-function is dependent on the ratio of the size and speed of the object (d/v) but not its absolute
size. The Rind model, however, has direct dependence on the size of the approaching object (see
Section 2.5). Neuronal data recorded from the DCMD neuron by Rind and Simmons (1992) show a
size dependence. However, the data from Gabbiani et al. (1999) suggest that the DCMD firing rate
is independent of the size and depends only on the ratio of the size and speed of the approaching
object. Since the η-function based model requires computing the exact size of the obstacles and their
rate of change, in an engineering sense we would need to design a system capable of extracting this
information from the visual scene. This is not an easy computation. The size information can be
accurately estimated only by extracting the object from its background which leads us to the problem
of visual segmentation. Biological visual segmentation algorithms have been proposed (Koch et al.,
1986) and their VLSI implementations have even been fabricated (Stocker, 2004). However, these
are complex solutions and require significant processing hardware and computational time. In our
quest for a simple collision avoidance system, we have therefore not pursued the η-function based
model further in this dissertation.

2.4 Methods

Numerical simulations of the STI and the Rind models were performed using Matlab (The Math-
works, Inc., Natick, MA). Simulations were performed on a set of computer generated stimuli and
real-world videos.

2.4.1 Visual stimuli

Visual stimuli used for testing the performance of the models can be broadly categorized into the
following groups:

1. Approaching and receding computer-generated objects

2. Real-world videos of collision and non-collision scenarios

The visual arena for all the computer-generated scenarios was three-dimensional (3D). The visual
field of the simulated monocular ‘insect’ was a two-dimensional (2D) spherical projection of the 3D
world, with both an azimuth and elevation extent of 180◦. The size of the computer-generated
visual stimulus was 300×300 pixels. We averaged every five neighboring pixel values to generate
a five-times downsampled visual field of size 60×60. This was done for two reasons. Firstly, the
pixel by pixel motion in the 300×300 visual field is jerky and downsampling it provides smoother
motion of the objects. Secondly, this spatial blurring mimics a similar spatial smoothing in the
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insect visual system (Land and Fernald, 1992). The contrast of the computer-generated stimulus
(a black or a white square) could be set at the start of an experiment and was usually set to be
1 (white). As the object approached the simulated insect, its angular size increased as an inverse
function of its distance from the observer, as is expected in the case of a real approach. The response
and time course of the simulations were normalized to match with responses from the original Rind
model such that each timestep of the simulation was equivalent to 0.46 ms, and each space unit was
equivalent to 5.6 cm. The magnitude was scaled by a factor of 0.68 to match it with the excitation
level of the original model at the fastest speed.

The videos used in our simulations were the same as used by Cuadri et al. (2005a) for testing
their Rind model based collision detection algorithm. This was done so that we could compare our
results with their observations. The car videos recorded cases of direct-collision, a road drive with
cars passing by, and cars translating horizontally past a stationary car at a close distance. We also
tested for a reverse-collision case where the actual collision movie was played frame-by-frame in
reverse time. The car videos had an image size of 240×368 and were also downsampled by a factor
of 5 to a size of 48×73, to simulate spatial smoothing. This was done to make it comparable to the
simulations performed using the computer-generated stimuli.

2.4.2 Computational models

In this section, we describe our implementation of the computational models that were used in this
simulation study.

Continuous-time Rind model: We implemented the Rind model in the continuous-time domain
by incorporating temporal filters in place of the fixed time-delays (see Figure 2.4). This novel
implementation simplifies the original Rind model while retaining all its features. The edge detector
based P layer of the original Rind model is replaced by a phototransducing unit PR and a high-pass
filter HPF. The low-pass filter units used in place of fixed delays have an added advantage. The
response of the low-pass filter persists for some time based on its time-constant. This eliminates
the need for artificially including persistence in the excitatory and inhibitory nodes as in the case
of the original Rind model. Instead of discrete frame-by-frame processing we have ‘continuous’-time
processing, the way visual information is actually processed by neurons. Our implementation of the
original Rind model is referred to as the continuous-time Rind model from here onwards.

We simulated an array of 60×60 processing units to match the pixel size of the computer gen-
erated stimuli. In the case of real-world videos, the number of processing units was modified to
48×73 units to match the aspect ratio of the video. Each processing unit for the continuous-time
Rind model (see Figure 2.4) comprised a photoreceptor unit, an excitation and inhibition unit, a
summation unit, a feed-forward inhibition unit, and an LGMD unit. The luminance information
from the visual stimulus was used as the input to the photoreceptors. A high-pass filter (HPF) was
implemented to extract temporal edge information from the stimulus. This was done to make our
model comparable to the ON/OFF response of the photoreceptors in the original Rind model (Rind
and Bramwell, 1996). This edge information was passed onto the excitatory and inhibitory units.
These units were implemented as low-pass filters. The time-constant of the excitatory units (LPFE)
was smaller than that of the lateral inhibitory units (LPFI), similar to that in the case of the original
Rind model. The slower lateral inhibition was designed such that the response to a laterally moving
stimulus could be inhibited by these units. However, for a rapidly expanding stimulus this inhibition
was slow and would not be able to inhibit the activity of the excitatory units. The low-pass filter
implementation of the excitatory and inhibitory units eliminated the need to associate an explicit
delay and persistence with these units as in the original Rind model. The low-pass filters were
implemented by using a buffer to store past values of the input signal. The length of each buffer
was five times the time-constant of the filter. The buffers were initialized to zero in Experiment 1 to
model the flash response of the original Rind model (for details see Section 2.5.1). In Experiment 2,
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Figure 2.4. Continuous-time Rind model. This model is a novel implementation of the Rind model. The
photoreceptor layer is a combination of phototransducing units (PR) and a high-pass filter stage (HPF)
which replaces the edge detector in the original model. The second layer has two low-pass filtering units
for excitatory (LPFE) and inhibitory (LPFI) units. The third layer is a summation layer (S) that receives
positive input from the LPFE unit and negative input from neighboring 12 LPFI units (not all connections
shown). A feed-forward inhibition unit (F) aggregates the high-pass filter output from all the photoreceptor
units (not all connections shown). The fourth layer has an LGMD unit which receives positive input from
all the S units and a negative input from the F unit.
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buffers were initialized by running the simulation with the first frame of the stimulus for a duration
equal to the longest buffer. Each summation unit (S) received input from one excitatory unit and
12 adjacent inhibitory units. Unless otherwise described, the feed-forward inhibition unit (F) was
implemented as the sum of all the photoreceptor units weighted by a gain factor and was always
active. The output from all the summation units and the feed-forward inhibition unit was pooled
by the LGMD unit.

Continuous-time Rind model with rectification: In Experiment 2 (Section 2.5.2), we used a
slightly modified version of this model. The modifications were implemented to make the model more
closely resemble biological computations. We introduced a rectification stage after the excitatory
(LPFE) and inhibitory (LPFI) units, thus making the output of the second layer strictly positive.
In biology, an excitation is always positive and an inhibition is always negative. The rectifier unit
ensured that the same would take place in the continuous-time Rind model with rectification as well.

Continuous-time Rind model with motion input: Stafford et al. (2007a) have recently imple-
mented an altered version of the original Rind where HR unit based expansion outputs (same as
the expansion computation in the STI model described below in Equation 2.6) were used after the
S units. The entire visual field was subdivided into several blocks and the outputs of S units in each
block were summed together. These summed responses were then correlated with adjacent blocks
to compute a collision avoidance output. We have implemented a comparable model, although with
some key differences. In our novel implementation, we have utilized the HR units as the first layer
of processing (see Figure 2.5). This was done for two reasons. Firstly, in insects elementary mo-
tion detection, as modeled by the HR unit, takes place at the level of the lobula plate before the
LGMD-DCMD neurons. Our model, therefore, may be closer to biology than the implementation
of Stafford et al.. Secondly, the output of the HR unit being motion dependent, a sudden change
in illumination (flicker) does not affect its response. This makes the response of the later stages of
this model more robust to flicker than the continuous-time Rind model and reduces false alarms.
Up to the Exp Filter stage, this model is exactly similar to the STI model described below. We
were able to eliminate the second order effect of feed-forward inhibition unit (F) in this model, as it
was unnecessary due to it not being triggered in almost all cases. The remaining processing stages
of the continuous-time Rind model were not altered. We used this model in Experiment 2 to study
whether it provides an improvement over the other continuous-time Rind models (Section 2.5.2).

STI model: We also simulated a Tammero and Dickinson (2002a) type system to compare the
performance of our implementation of the Rind model with the STI model. The STI model was
implemented for a monocular simulated insect with a 2D sensor of angular extent 180◦ in both the
azimuth and elevation. The input layer was an array of HR units that compute motion along two
orthogonal directions of the sensor plane. The sensor plane was divided into four quadrants and
the motion vectors pointing in the outward directions in each quadrant were summed together (for
example, up and right motion components in the top-right quadrant). The total expansion output
(E) was computed as follows:

E =
∑

top−left

(
√

neg(Mx)2 + pos(My)2) +
∑

top−right

(
√

pos(Mx)2 + pos(My)2)

+
∑

bottom−right

(
√

pos(Mx)2 + neg(My)2) +
∑

bottom−left

(
√

neg(Mx)2 + neg(My)2) (2.6)

where pos() and neg() are functions that extract the positive and negative components of their
inputs, respectively. Mx and My are motion outputs along the x and y directions of the 2D sensor
plane, respectively. Mx is positive when the motion was left to right and negative otherwise. My is
positive when the motion was bottom to top and negative otherwise. The model was structurally
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Figure 2.5. Continuous-time Rind model with motion input. The input layer of the Rind model has been
replaced by a Hassenstein-Reichardt (HR) motion detector unit. The motion output from the HR units is
processed by an expansion filter (Exp Filter). This combines motion output of HR units along the horizontal
and vertical axes to generate motion components in a radially outward direction (as shown by the arrows in
the Exp Filter unit). Up to this stage, the model is the same as the STI model. This expansive motion is fed
to the excitatory (LPFE) and inhibitory (LPFI) units. The expansive and inhibitory signals are combined
together in an S unit. All the S units are summed together in an LGMD unit. In this model, the F unit was
not utilized.
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the same as the continuous-time Rind model with motion input up to the expansion filter stage (see
Figure 2.5).

This motion output is the same as the response generated by the central sub-field in the Tammero
and Dickinson model (see Section 2.2). This model has earlier been simulated and tested for various
collision and non-collision cases by Harrison (2005). In this chapter, we have simulated the STI
model in Experiment 2 to compare its collision avoidance response with similar responses from the
continuous-time Rind models (see Section 2.5.2).

2.5 Results

To compare the performance of the continuous-time Rind models with the original, we first performed
experiments similar to those published by Rind and Bramwell (1996). The details of the experiments
and their results are described in Sections 2.5.1. In Section 2.5.2, we present a comparison between
the continuous-time Rind model with rectification, continuous-time Rind model with motion input,
and the STI model based on their responses to the real-world car videos evaluated by Cuadri et
al. (2005b).

2.5.1 Experiment 1

The original Rind model was tested successfully by Rind and Bramwell (1996) for various simu-
lated collision and non-collision scenarios. In our first experiment, we compare the response of the
continuous-time Rind model with the original to show that our implementation is also selective to
collision over non-collision cases. A computer-generated 2D stimulus was simulated to approach,
recede, and fly past a stationary sensor plane as detailed in Section 2.4.1.

In the first two cases, we varied the speed of a simulated bright object (object-background
contrast was one) from 2.8 m/s to 14 m/s in steps of 2.8 m/s. The output of the LGMD unit
in the continuous-time Rind model was recorded for both an approaching and a receding object.
The response of the continuous-time Rind model and the original Rind model are shown in Figure
2.6. The output of the LGMD unit increases exponentially as the object approaches the insect, and
peaks when the object occupies the entire visual field (see Figure 2.6a). Also, the fastest approaching
object was seen to elicit the strongest and quickest response. The response for comparable speeds
in both the continuous-time and the original Rind models match closely (see Figure 2.6a and b).
The only difference is that the response of the continuous-time Rind model has a ‘bump’ right at
the start of the approach which is missing in the original model. This represents the flash response
of the LGMD neuron (Rind and Bramwell, 1996) and is visible for the receding object case in the
original model (see Figure 2.6d). The flash response is dependent on the initialization of the filter
buffers of the continuous-time Rind model and can be eliminated if the stimulus is kept static for
some initial time before the approach. The period of time for which the object must be kept static
is equal to the buffer length of the slowest filter used in the model. This is equivalent to initializing
the buffers of all the filters being used in the model as described in Section 2.4.2. The response of
the continuous-time model to receding objects was almost zero when simulated for the same set of
speeds, except for the flash response at the start of the simulation. Notice that the flash response in
the continuous-time Rind model is stronger than the flash response in the original Rind model (see
Figure 2.6c and d). This may be due to our initializing the filter buffers to zero (black). Since the
contrast of the object was one in this experiment, the simulated photoreceptors saw a bright flash
(black to white transition), hence a larger flash response.

The response of the continuous-time Rind model was unchanged when the contrast of the object
and the background were reversed (a black square on a white background). The response of the
model to an accelerating object was stronger than the response to an object approaching at a fixed
speed. This is also in accordance to what is known about the original Rind model: the faster the
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edges of the object expand, the stronger is the output of the LGMD unit. In all these cases, the
continuous-time Rind model was equivalent to the original Rind model.

The response of the continuous-time Rind model with rectification, and with motion inputs are
roughly the same as the above model for the collision and non-collision cases discussed above. The
STI model has also been shown to successfully detect collision over non-collision in various scenarios
by Harrison (2005).

In the next experiment, we probe the model with real-world car videos as stimuli and compare
the response characteristics with both the continuous-time Rind model with motion input and the
STI model.

2.5.2 Experiment 2

In this experiment we used video clips as input that were recorded from a stable camera inside
a car. The car videos were those used by Cuadri et al. (2005b) (detailed in Section 2.4.1). The
videos were recorded at a rate of 25 frames per second. These videos show three scenarios: a car
undergoing a collision, horizontal motion in front of a stationary car, and a car driving around
without encountering any collisions. We created a reverse-collision video by replaying the collision
video in reverse time to generate a scenario similar to that of a receding object in Experiment 1.
The continuous-time Rind models and the STI model were simulated with these video clips as inputs
and their responses are presented below.

Our experiments with the continuous-time Rind model revealed that it was not able to dis-
criminate between the collision and non-collision videos. This is consistent with what other au-
thors have reported about the original Rind model for the same videos (Cuadri et al., 2005a;
Stafford et al., 2007b). Here, we compare the performance of the continuous-time Rind model
with rectification, continuous-time Rind model with motion input, and the STI model for the same
car videos.

The response of the continuous-time Rind model with rectification using these video clips are
shown in Figure 2.7. All the buffers in the filters were initialized by running the simulation for the
first six seconds using the first frame as input. For a collision scenario, the response of the model is
shown by a dark line. This response weakly follows the approach of the obstacle and peaks before
the collision. A much stronger peak response was recorded for the same movie played in reverse
time (thin line). This strong response was due to the inability of the lateral inhibitory network to
suppress sudden appearance of the edges of the object in the visual frame. The response to two
horizontally translating cars (dashed line) was also about twice as strong as the collision case output.
However, the peak response to a non-collision car movie (thick line) was about 50% smaller than
to the collision response. This non-collision movie included rotational input (when the car turned
around corners) as well as input from slowly moving objects (cars moving in the same direction but
in different lanes).

This experiment reveals two major problems with this model: i) the reverse-collision peak re-
sponse is larger than any other case by a factor of three, and ii) the horizontally translating cars were
able to produce twice as strong a peak response than the collision case. To suppress the horizontal
motion component in the model, we simulated the continuous-time Rind model with motion input
which utilizes HR units to compute motion components in radially outward directions and feeds
them to the subsequent stages of the continuous-time Rind model with rectification (for details see
Section 2.4.2).

The output from the continuous-time Rind model with motion input is shown in Figure 2.8. The
response to the collision video (dark line) was stronger compared to the horizontally translating
cars (dashed line) and the non-collision video (thick line). However, the strongest peak response
was still recorded for the reverse-collision case (thin line). The response was strong in the reverse-
collision case because of sudden appearance of object edges in the visual frame. Leaving aside the
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Figure 2.6. Comparison of the response from the continuous-time and original Rind model. (a) Response
of the continuous-time Rind model to an approaching object. The speed of approach was varied from 14
m/s to 2.8 m/s. The peak was observed when the object occupied the entire visual field. The appearance
of the object in the visual field causes a small peak (flash response) in the initial 8 ms. (b) Response of the
LGMD unit in the original Rind model. Approach speed varied from 14 m/s to 4 m/s. The original model
does not have a flash response for an approach scenario. (c) Response of the continuous-time Rind model
to a receding object at same speeds as in (a). The sudden appearance of the object in the visual field elicits
a flash response from the model. The response decays to zero after the flash response. (d) Response of the
original Rind model to a receding object at same speeds as in (b). There is a spike in the excitation level due
to the sudden appearance of the object in the visual field similar to the flash response in the continuous-time
model.
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Figure 2.7. Response of the continuous-time Rind model with rectification to multiple car videos. The thin
line represents the response of the system to a reverse-collision video. The dark line represents the collision
case, while the dashed and the thick lines represent translating-cars video and non-collision road-drive video,
respectively. The responses to the reverse-collision and translation videos are stronger than the response to
the direct collision video due to the inability of the lateral inhibitory network to suppress fast translation of
edges across the visual field.
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Figure 2.8. Response of the continuous-time Rind model with motion input to multiple car videos. The thin
line represents the response of the system to a reverse-collision video. The dark line represents the collision
case, while the dashed and the thick lines represent translating-cars video and non-collision road-drive video,
respectively. The collision response is stronger than the response to the translation and road-drive videos.
The response to the reverse-collision video is the strongest and shows that expansion is not sufficient to
suppress large sudden motion of edges.
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Figure 2.9. Response of the Spatio-temporal integration model to multiple car videos. The thin line
represents the response of the system to a reverse-collision video. The dark line represents the collision case,
while the dashed and the thick lines represent translating-cars video and non-collision road-drive video,
respectively. The response to the collision video is the strongest. The response to the non-collision and
reverse-collision videos are within 30% of the collision response.

reverse-collision case, this model performed notably better than the simple continuous-time Rind
model.

Next we simulated the STI model for the same set of car videos. The response of the STI model
to the different car videos is shown in Figure 2.9. Unlike the response of the continuous-time Rind
model with motion input, here the response to the collision video was the strongest (dark line). The
response to the reverse-collision video (thin line) spiked initially but the response was smaller than
the peak response for the collision case. The responses to the horizontally translating cars (dashed
line) and the non-collision video (thick line) were weaker and distinguishable from the collision case.
This model was easily better than the other two models and a threshold could be set to separate the
collision and the non-collision cases which is the goal of any successful collision avoidance model.

In the next section, we analyze the response characteristics of the three models simulated in
these experiments and discuss the relative performance of these models.

2.6 Discussion

As seen from the simulation results with computer-generated stimuli, the continuous-time Rind
model relies on the near-exponential increase in the size of an approaching object to trigger a collision
avoidance response. If the object is not on a collision trajectory (for example, if it is translating
across or receding from the observer) then the lateral inhibition layer suppresses the response of
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the LGMD unit. This way, only a fast approaching object triggers a collision avoidance response.
All other motion responses are suppressed. In a real-world scenario, however, rotation and/or fast
translation of the observer also causes a large number of summation units (S) to activate, triggering
a collision avoidance response. This false alarm is caused mainly because the Rind model operates by
calculating local edge speed. It relies upon the edge information provided by the input layer (HPF
units) and the delayed inhibition mechanism of LPFI units to predict an impending collision. Being
non-directional, it makes no distinction between a rotation, a forward translation, or a sideward
motion. This was discovered during many failed simulations using the continuous-time Rind model
in our study. This shortcoming of the model has also been reported by other authors (Cuadri et al.,
2005a; Stafford et al., 2007b). They have argued that for an insect, an approaching predator has a
much larger size-to-speed ratio than any self-induced motion. The car videos that we used in our
simulation study did not represent the large speed-to-size ratio of a predator. In the case of the car
collision video, for instance, the expansion of the obstacle (a toy car) was not as rapid as a predator
approaching its prey as can be seen by the time course of the simulation (Figure 2.7). This was
also the reason why the continuous-time Rind model with rectification did not elicit a very strong
response to the collision video.

In the case of the translation video, the horizontally translating cars moved across the camera at
a very close distance (large edge extent) and at a fast speed. Due to the fast speed of the cars, the
lateral inhibition units did not have enough time to suppress the activity of the LGMD unit. The
response of the continuous-time Rind model with rectification to the translation video was much
stronger than that to the collision video. The continuous-time Rind model with motion input, on
the other hand, was able to suppress the translational motion across its view field as it was filtered
out by the expansion filter (see Figure 2.5). Therefore, the peak response of the continuous-time
Rind model with motion input to the translational video was smaller than its peak response to the
collision video by a factor of two. The STI model is exactly similar to the continuous-time Rind
model with motion input up to the expansion-only filter. Therefore, it is not surprising that the
response of the STI model to the same video clip is also much smaller than its response to the
collision video.

We also notice a strong response to the reverse-collision video for all the models. This was due to
the manner in which the car collision was recorded. The camera was focused on the car and the car
occupied the entire visual field at the start of this video clip. In the first one second of the movie, as
the camera backed up, the outer edges of the car appeared in the frame for the first time. Since the
output of the continuous-time Rind model is proportional to the edge extent visible in the field of
view, the response increased during the first thirty frames. This was also the reason for a stronger
response in the case of continuous-time Rind model with motion input and the STI model.

Based on the above comparisons, we can conclude that no threshold can be set for the continuous-
time Rind model with rectification that will disambiguate between the collision and non-collision
scenarios. The continuous-time Rind model with motion input is more attractive, and in our simula-
tion study fails only for the case when the car video was played in reverse time and the obstacle was
moving very close to the camera. The STI model performed the best among the three models. Since
the continuous-time Rind model with motion input uses the STI model as a sub-unit, we may note
that its additional processing units actually make it respond worse than the STI model. The lateral
inhibition in the continuous-time Rind model with motion input suppresses the response of the S
units even for the collision case. However, the lateral inhibitory network is too slow to respond to
the sudden appearance of the edges in the case of reverse-collision video. This caused the response
to the reverse-collision video for the continuous-time Rind model with motion input to be larger
than the collision video. In the STI model, there is no lateral inhibition, and therefore the collision
output is not suppressed in any manner and is the strongest among all videos.
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2.7 Summary

We presented a simulation study of two novel continuous-time implementations of the Rind model
and compared their response to the STI model. The STI model and the continuous-time Rind model
with motion input performed better than the continuous-time Rind model with rectification for the
horizontal translation video. This was because the continuous-time Rind model with motion input
and the STI model have a preference for expansive motion. The input to the continuous-time Rind
model with motion input is processed by an expansion filter, thereby reducing the response due to
pure translation. The STI model is structurally the same as the continuous-time Rind model with
motion input up to the expansion filter. Nevertheless, the sudden appearance of a lot of edges, as
in the case of the reverse-collision movie, was still enough to trigger a large response from all the
models. In the case of both the continuous-time Rind model with motion input and the continuous-
time Rind model with rectification, the responses were larger than the responses to the collision
movie. The response of the continuous-time Rind model with rectification was the smallest for the
non-collision movie among all three models. The difference in the magnitude of the STI model’s
response to the collision, reverse-collision, and non-collision videos was within 30%. This may not
be sufficient to determine a threshold for collision avoidance if the illumination and/or the speed of
the car changes. Therefore, it can be argued that filtering the expansive motion alone may not be
sufficient to generate a reliable avoidance response.

As discussed in Section 2.6, the lateral inhibition network in the continuous-time Rind model
with motion input made it perform worse than the STI model. The response of this model was
also worse than the continuous-time Rind model with rectification for the road-drive video with no
collisions. The only place where the motion input based model was better than the rectification
based model was the case of horizontally translating cars. In the next chapter, we use tracking to
negate horizontal motion parallel to the observer. This makes the continuous-time Rind model with
rectification more attractive than the continuous-time Rind model with motion input. We investigate
the continuous-time Rind model with rectification and the STI model by means of mathematical
analysis and show how tracking may improve their performance.
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Chapter 3

The effect of tracking on collision avoidance

performance

In this chapter, we explore in greater detail why the two collision avoidance models simulated in
the previous chapter fail to reliably predict an imminent collision. The simulation results show that
even when the models elicit a peak response to an approaching obstacle, the response magnitude by
itself is not consistent for all collision or non-collision cases. In a threshold based model this poses
a problem and raises an important question: is it possible to relate the response magnitude of the
collision avoidance models to the distance of the obstacle from the observer, and if so, how?

We try to answer this question by developing a basic algebraic formulation of the problem where
an obstacle on a collision course approaches a fixed viewer. The trajectory charted by an obstacle in
the real world is three-dimensional (3D). However, the image that is processed by the insect visual
system is only a two-dimensional (2D) projection of the real world. While the motion of the obstacle
in the real world is described by three cartesian directions x, y, and z, the motion projected on the
photoreceptors is possible only along two of the three directions (say, x and y). The motion along
the third direction (z axis) is not explicitly resolvable by processing a sequence of two dimensional
images (Duric et al., 1999). The relative distance of the objects in a scene may be computed directly
by using non-directional speed and motion parallax (Bruckstein et al., 2005). We describe two such
models for non-directional speed estimation in Chapter 5. In this chapter, we show how to indirectly
relate the response of the collision avoidance models to the distance from the obstacle through
tracking. This is inspired by the active vision approach used in computer vision (Bajcsy, 1985). We
compare simulation results of both the continuous-time Rind model with rectification and the STI
model with and without tracking to show how tracking improves the performance of the models.
From here on for simplicity, we will refer to the continuous-time Rind model with rectification as
the Rind model.

In the next few sections, we present a 1D and 2D analysis of the collision avoidance problem.

3.1 Analysis of a 1D object’s approach

A common method used to analyze a collision scenario is to assume that a 1D object is translating
towards an observer in a 2D world (Laurent and Gabbiani, 1998; Gabbiani et al., 1999). The analysis
below is based on such a 1D approach scenario.

Let us consider a rigid object of height h is approaching an observer E at a speed v (see Figure
3.1). Let the observer be able to compute the angle subtended by the object. At time t1, the object
is at a distance d1 from the observer and its angular subtense is θ1. At another time instant t2
(t2 > t1), let the distance between the object and the observer be d2 and the angle subtended by
the object be θ2. Note that 0 ≤ θ1, θ2 ≤ π/2. We can represent the distance from the observer as a
function of the height of the object and its angular subtense.

d1 = h cot(θ1) (3.1)

d2 = h cot(θ2) (3.2)

The speed of approach v is then given as
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Figure 3.1. A 1D object’s approach towards a fixed observer. The object of height h subtends angles θ1

and θ2 at two different times instants t1 and t2 during its approach towards the observer.
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v =
d2 − d1

t2 − t1
(3.3)

Replacing d1 and d2 with Equations 3.1 and 3.2, we get

v = h · cot(θ2)− cot(θ1)
t2 − t1

(3.4)

In order to compute the time-to-collision (TTC) we simply substitute cot(θ2) with cot(π/2) (as
θ2 becomes π/2 when the object reaches the observer) and t2 with tc, the time of contact. From
Equation 3.4 we get

tc − t1 =
h

v
(cot(π/2)− cot(θ1)) (3.5)

Or simply,

tc − t1 =
h

v
cot(θ1) (3.6)

The TTC is, thus, dependent upon the measurable θ1 and the unknowns h (size of the object)
and v (the speed of the object). Though h and v are independently unknown, we can compute the
ratio of the two from Equation 3.4 as:

h

v
=

t2 − t1
cot(θ2)− cot(θ1)

(3.7)

Therefore, in an ideal 1D approach scenario, it is possible to predict the time to collision by
measuring the angular subtense of the object. This computation, however, is dependent on two
implicit assumptions:

1. That the approaching object is in the direct collision path, and

2. That the speed of approach is constant at all times.

If either of the above assumptions is not met, the TTC estimate is no longer valid. For example,
if an object is not moving directly towards an observer, then the TTC estimate only reveals the time
it will take the object to reach an infinite sensor plane (AA′BB′ in Figure 3.1) passing through the
observer. Instead of computing time to collision, in this scenario the TTC is the time left before the
object passes by the observer. This is not particularly useful, especially when an observer is moving
with respect to their surroundings. For instance, an observer moving through a tunnel with textured
walls will not be able to predict whether the looming texture on the wall is harmlessly passing by
or is going to collide with it. The η-function based model uses a similar analysis for computing
both the η and TTC parameters. For an off-centered approach, the η-function based model may
not predict a collision reliably. Additionally, we have not discussed how the angular subtense of an
object would be determined from the intensity map incident on the photoreceptors. As discussed in
the previous chapter, to obtain the angular subtense of an object, the visual system would have to
segment the visual scene – a complicated processing step.

A 1D approach scenario in a 2D world is unrealistic and at best, only helps to provide a basic
understanding of the problem. Most biological and artificial systems have a 2D array of sensors on
which the 3D world gets projected. In the next section, we consider this problem of motion in a 3D
world projected on a 2D array of sensors.
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Figure 3.2. 2D projection of a 3D object. The point P in the real environment is projected as p on the
sensor array.

3.2 Motion under 2D perspective projection

In a biological system, the visual input is usually modeled as a 2D projection of the real world
onto an array of photoreceptors. The intensity map is then processed by successive stages of the
visual system to interpret the scene (Rind and Bramwell, 1996; Franz and Krapp, 2000). The
same is also true for most optical-flow/motion-flow based computer vision algorithms (Horn, 1986;
Fermuller and Aloimonos, 1992). In this section, we present a mathematical framework to analyze
how a model that only has access to the intensity information extracts parameters of object motion
like speed and distance. As shown in Figure 3.2, the sensors are arranged in a 2D plane AA′BB′.
Under perspective projection (Foley et al., 1995) on a plane at a distance f from the origin, the
motion at a point P (Xa,Ya,Za) with translational speed S (VX ,VY ,VZ) is represented by the point
p (x,y) with speed s (vx,vy), where

x =
Xaf

Za
(3.8)

y =
Yaf

Za
(3.9)

Without loss of generality, we can choose f = 1 as the focal length of our imaging system. Then,
the velocity at point p (x,y) is computed by differentiating x and y and substituting Xa and Ya

according to Equations 3.8 and 3.9:

vx =
dx

dt
=

d

dt

(
Xa

Za

)
=

VX

Za
− xVZ

Za
(3.10)

vy =
dy

dt
=

d

dt

(
Ya

Za

)
=

VY

Za
− yVZ

Za
(3.11)
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Thus, we find that the speed of the projected point p on the sensor array is a combination of
the speed in the respective cartesian (x or y) direction and the distance of the object normal to the
sensor plane (z direction). These equations represent an underdetermined system with an infinite
number of possible solutions. This becomes clear by looking at the geometrical interpretation of
Equations 3.10 and 3.11. These equations represent planes in the (VX ,VY ,VZ) coordinate system
(see Figure 3.3). The solution to the system of equations is represented by the intersection of the
two planes – a line L. Thus, motion along the x and y directions (parallel to the sensor plane) is
indistinguishable from the motion along the z direction (approach).

If it were possible to remove the lateral motion of the object, its motion towards the observer
would be exposed. However, the discussed scenario of a fixed viewing plane has an inherent limitation
in the way information about the motion of the real world object is represented at the very first stage
as discussed in the previous paragraph. Also, this representation is dependent on how accurately we
can determine the local velocity of the point p.

Optical flow, which is defined as the local velocity field of point objects in a scene, has been argued
to be a good mechanism to determine the motion of rigid body objects (Horn, 1986; Fermuller and
Aloimonos, 1992). However, the computation of the optic flow is by itself an ill-posed problem
and simplifying assumptions, such as smoothness of the intensity pattern, are required to solve the
mathematical equations (Horn and Schunck, 1981). Spatio-temporal frequency based algorithms,
on the other hand, are stable correlation-based methods that can be used to compute local motion
at each point in a scene (Verri and Poggio, 1989; Lindemann et al., 2005). It has been shown that
spatio-temporal frequency based methods such as the HR model may also be used for estimating the
qualitative properties of motion from the real world, such as the focus of expansion, or discontinuities
due to relative motion of an object with respect to its background (Verri and Poggio, 1989). In some
cases, including collision detection, these qualitative properties may be used instead of quantitative
optical flow to determine the trajectory of an approaching obstacle. For these reasons, correlation-
based models like the STI model are superior to computer vision based algorithms that mostly rely
on exact optical flow calculation (Horn, 1986; Aloimonos et al., 1988; Fermuller and Aloimonos,
1992).

3.3 Collision avoidance models - an analysis

The use of correlation-based models in place of optical flow based algorithms is advantageous only
to the extent that it presents a mathematically stable and computationally simple alternative (Re-
ichardt et al., 1988; Verri and Poggio, 1989). However, it does not address the issue that the local
speed of a point on the sensor plane may not be used to disambiguate between the infinitely many
solutions for the corresponding motion in the real world. With this background, we present an anal-
ysis of the Rind and STI models to reveal their specific limitations in the hope of finding solutions
to address these shortcomings.

3.3.1 The Rind model

As has been discussed in some detail in the previous chapter, the Rind model relies on a lateral
inhibitory network to reject the non-collision scenarios from the collision ones. The basic assumption
of the model is that an object on a collision course expands more rapidly than an object translating
parallel to the observer, and hence, only the object on a direct collision path will be able to overcome
the lateral inhibition from the neighboring sensor units. However, the simulation results from the
previous chapter show that unambiguous determination of a threshold for such a collision avoidance
model is not trivial. Let us consider the simple case of an object moving with a velocity (VX , VY , VZ)
in the real world with the sensor plane of the Rind model oriented along the x-y plane. Let us choose
the approach speed (VZ) of the object to be zero. In this case of non-collision, the output of the
Rind model may still increase due to any of the following reasons, illustrated in Figure 3.4:
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VX/Za -xVZ/Za = b1

VY/Za - yVZ/Za = b2

Figure 3.3. Geometrical interpretation of an underdetermined system of equations. The planes parallel to
the x-z and the y-z surfaces intersect each other at a line L.

• the contrast of the object may be changing due to its non-uniform surface reflectance and/or
due to non-uniform illumination,

• the object may be entering the visual field of the observer, and hence an increasing number of
motion units may be getting activated,

• the translational speed of the object may be faster than the delay in the inhibition network.

In the first scenario, the increase in response due to non-uniform surface reflectance or illu-
mination is caused by the absence of a contrast saturation scheme in the Rind model. Evidence
of contrast saturation in the insect visual system has been found and modeled (Harris et al., 2000;
Rivera-Alvidrez and Higgins, 2005). This problem might be solved by simply incorporating a similar
contrast saturation unit in the Rind model.

The inability of the Rind model to reject motion parallel to its sensor plane is the main reason
behind the increase of the model’s response in the last two cases. Another problem that ties into
this set is the case when an object is approaching from a wide angle with respect to the sensor plane.
In such a case, the object may not be in the view field of the observer initially, and based on the
angle of approach it may not award sufficient time to the observer to elicit an avoidance response.
All the above-listed problems may have a common solution if the observer may somehow keep
the object in the center of the visual field . We will discuss this further in Section 3.4.

In the next section, we examine the STI model.

3.3.2 The STI model

The STI model also has its own set of limitations. The model computes the expansion in a visual
scene to determine whether or not a collision is imminent. As shown in Section 3.2, the motion
computed from the visual image of a scene does not disambiguate between translation parallel to
the observer and approach. This becomes apparent when we observe how the expansion output is
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Figure 3.4. Situations which limit the collision avoidance performance of the Rind model. Each pair of
boxes represents the 2D image of the real world at time instants t1 and t2 (t2 > t1). (a) Non-uniform surface
reflectance or illumination may lead to an increased activation of the motion units. (b) The edge extent of
an object within the visual field of an observer may change due to the object’s entry into the view field. (c)
A fast moving object may activate a larger set of motion units due to slow lateral inhibition.
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computed on the input visual image. The 2D sensor array extracts motion information in both the
cartesian x and y directions before combining them to calculate the net motion at a given point.
The net expansion is computed by combining the outward motion in each quadrant as described in
Equation 2.6.

Figure 3.5 shows four common scenarios experienced by a navigating observer: (a) expansive
motion field in the case of a direct collision, (b) rotational motion field while rotating about a fixed
axis, (c) off-center expansion in the case of an oblique collision, and (d) self-induced motion field while
driving forward in a textured tunnel. We can compute the net expansion for each case normalized
to the value of the direct collision scenario by utilizing Equation 2.6. Thus, the normalized net
expansion for the direct collision case is 1. For rotational motion, this may be computed to be 0.65.
For the off-center expansion shown in Figure 3.5c, the net expansion is only 0.0952! In the case of
a forward drive in a textured tunnel, the net expansion is 0.894.

Based on the computation of net expansion in four commonly encountered scenarios we find that
net expansion alone may not be used for calculating a threshold for collision. In the above scenarios,
the response of the model to an oblique collision was much smaller than the case of a benign forward
drive through a textured tunnel. The response due to pure rotation was also about half as strong
as the direct collision case. If the rotational speed is more than the direct collision speed, then the
response due to a rotation may exceed the response due to a collision.

Thus, we see that both the Rind and the STI models fail to reliably detect an impending collision
and may lead to false alarms or may fail to report an imminent collision. The major reason behind
the failure in the Rind model is its inability to reject horizontal motion, and the STI model is the
manner in which it computes expansion. Both the problems may have a common solution based on
tracking the approaching object in the visual field. We discuss such a solution in the next section.

3.4 Tracking and collision avoidance

Many researchers in the field of computer vision have argued how an ‘active’ observer may be able
to tackle some of the problems we have discussed in the previous section (Bajcsy, 1985; Aloimonos et
al., 1988; Fermuller and Aloimonos, 1992). An active observer is an observer that is free to move its
‘gaze’ in order to track some feature or object in its visual field. Figure 3.6 shows an active observer
that has two degrees of freedom about its vertical and horizontal axes. Such an observer is able to
rotate its sensor plane such that it may keep an object directly in front of it. As shown in Figure
3.6, this may be accomplished by keeping the line passing through the center of the sensor plane
(P ) and the center of mass of the object (P ′) normal to the sensor plane.

Let us examine how this affects the computation in the case of our two representative collision
avoidance models. To answer this, let us consider the case of an object moving in the real world with
speed (VX , VY , VZ). Let the speed of approach be zero (VZ = 0). In this case the object is moving
in a two dimensional plane parallel to the viewing plane. Let us also assume that the observer is
equipped with an algorithm that can exactly track the object and is able to compensate for the
motion of the object almost instantly. In this scenario, as long as the observer is able to reject its
self-motion induced due to rotation of its sensor plane, the only motion it experiences is due to the
change in the viewing angle of the object. This component is usually much smaller than actual
motion in any direction. Therefore, the response of the collision avoidance models for horizontal
motion will be greatly diminished.

Next, let us consider the case when VZ 6= 0. Since the observer is able to compensate for the
motion in the x−y plane, the only motion registered by the sensor array is due to the motion in the
z plane and due to a change in the viewing angle. If we neglect the much smaller motion component
due to the change in the viewing angle as compared to the expansive motion in the z direction, the
problem of 3D motion gets converted into a 1D motion problem. This is the same scenario as was
discussed in Section 3.1 where the object is always maintained in the center of the visual field. The
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(a) Expansion (b) Rotation

(c) Off-center expansion (d) Drive forward

Figure 3.5. Limitations of the Spatial and Temporal Integration model. (a) Expansive motion of an object
is computed by measuring the speed of the edges along x and y directions and combining them via vector
summation. (b) A clockwise rotation of the observer about its axis generates horizontal motion which is
consistent with the expansion motion in the right-half of the view field. (c) An off-center approach is not
always consistent with the expansive motion output. (d) Outward motion of a pattern may be consistent
with the expansive motion while the observer is moving in a tunnel with vertical stripes.
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Figure 3.6. Active Observer with two degrees of freedom, shown by the arrows along the horizontal and
vertical axis. The visual sensor may be rotated about either axis to actively track the object in its visual
field.

tracking of the object makes VX = VY = 0. Thus, the equation for motion of a projected point p on
the sensor plane, as shown in Figure 3.2, is now simplified to:

vx =
dx

dt
=

VX

Za
− xVZ

Za
= −xVZ

Za
(3.12)

vy =
dy

dt
=

VY

Za
− yVZ

Za
= −yVZ

Za
(3.13)

From these equations, it is possible to exactly compute both the speed of approach VZ and the
distance Za of the object from the sensor plane provided we can estimate the correct vx and vy

values at the sensor plane location (x,y). Thus, tracking an object in the visual field may solve most
of the problems that we discussed about the Rind and STI models.

Several researchers have shown that it is possible to navigate without collision by using optical
flow with visual tracking for a binocular observer (Bandopadhay and Ballard, 1991; Aloimonos et
al., 1988). Fermuller and Aloimonos (1992) have developed a collision avoidance algorithm for an
active monocular observer using normal flow (optical flow normal to the boundaries of an object).
However, for this algorithm to work the normal flow must be exactly computed at each instant. As
was discussed in Section 3.2, this is extremely hard for most real scenarios. Our contribution in this
work is developing a framework for biological collision avoidance models using a spatio-temporal
frequency based approach which does not suffer from the above problem.

In the next section we describe a simulation environment to compare the performance of the
Rind and STI models with and without tracking capability.

3.5 Methods

We simulated the Rind and STI models, with and without a tracking algorithm, using Matlab
version R2007a (The Mathworks, Natick, MA). The simulation environment was designed to test
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the response of the models for collision and non-collision scenarios. In all the cases, a single two-
dimensional object oriented parallel to the x-y cartesian plane moved inside a three-dimensional
world. The size of the visual arena was scaled to match the scaling used in the simulations performed
in Chapter 2. The size of the arena was calculated to be of size 4480× 4480× 5600 cm3. A 40× 40
array of sensor units implementing either the Rind or the STI model was used to compute a response
of the moving object. Using the same scale as above, the size of the object was chosen to be 2.24
m×2.24 m such that it was equal to the extent of the sensor array. The implementation of the STI
and Rind model were the same as described in Section 2.4.2.

For simulations of the Rind and STI models with tracking, the sensor array was kept pointing
towards the approaching object if the object was in front of it. The sensor plane was allowed to
rotate only ±45◦ about either axis. The orientation of the sensor array was determined by computing
the centroid of the intensity map of the visual field using a feed-forward linear system. The tracking
algorithm computed the centroid (xc,yc) using the following formula:

xc =

∑
i xi ·

∑
j E(xi, yj)∑

i

∑
j E(xi, yj)

(3.14)

yc =

∑
i yi ·

∑
j E(xi, yj)∑

i

∑
j E(xi, yj)

(3.15)

where E(xi, yj) is the intensity of a point at image location (xi,yj), i and j span the x and y
dimensions of the sensor plane, and the midpoints of the sensor plane are taken to be the origin.

Tracking was performed by adjusting the azimuth and elevation angles of the sensor plane based
on the centroid location at each timestep by using the following formula:

θaz(t) = θaz(t− 1) + gaz × xc (3.16)
θel(t) = θel(t− 1)− gel × yc (3.17)

where the time instant t refers to the current frame and (t − 1) to the last frame, θaz and θel are
azimuth and elevation angles respectively, and gaz and gel are gains for the respective cases.

Due to the simplicity of the visual environment, this algorithm computed an exact location of
the target as long as the object remained in the visual field of the observer. We terminated the
simulation whenever the object went outside the visual field of the observer, either because the
sensor plane had to turn more than ±45◦ or if the object hit one of the walls in the 3D arena. The
projected angular size of the object on the sensor plane was updated at each timestep such that its
size grew inversely with its distance from the sensor array.

At the start of a simulation run, a simulated object was assigned a starting (x, y, z) position.
The z position of the object specified the distance of the object from the viewer along a direction
normal to the sensor plane. The x and y positions were ±5.6 m from the center of the visual field.
The z positions were between 44.8 m and 56 m from the observer. The speed of the object along all
three cartesian axes was then generated from a uniform random distribution. The range of speeds
was chosen from three different sets for the x and the y axes. The first set was chosen between
±1.68 m/s, the second between ±2.24 m/s, and third between ±3.36 m/s. The speed along the z
axis varied from −2 to −20 m/s. The negative sign of the z speed denotes that the object always
approached the viewing plane. A total of 1500 simulations were performed for each model. Due to
the random generation of the speed, most trajectories resulted in non-collision scenarios. The object
was considered close to an imminent collision at a distance less than 5 m from the observer (about
twice the size of the object). The peak response (Rpeak) of the models was recorded along with the
distance (dp) at which the response peaked and the minimum distance (dm) an object reached to the
observer. We binned this data for every 1.12 m from the observer and computed its mean (R̄peak)
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and standard deviation (σR). The R̄peak and σR were plotted versus both dp and dm. The data
from the models with tracking capability were fit with the following equation for all but one case:

R̄peak =
K1

d− d0
(3.18)

where d is either dp or dm, and K1 and d0 are fitting constants.
For the Rind model with tracking, R̄peak versus dp curve was linear and was fitted with the

equation of a line:
R̄peak = m · dp + c (3.19)

where m is the slope and c is a fitting constant.
In Section 3.6.5, we present a case of noisy tracking to examine how sensitive the performance

of the models with tracking capability are to noise in centroid computation. This was done by
adding a Gaussian-distributed noise signal (mean = 0, variance = 8) to the centroid output of the
tracking algorithm. We must note that the size of the sensor array is 40×40 and a variance of 8
is 20% of its size. Therefore, these simulations represent a very unreliable tracking algorithm. The
simulations were performed with x and y speeds randomly chosen from a uniform distribution with
speed between ±2.24 m/s. The z speed varied from -2.68 to -13.44 m/s and a total of 500 simulation
runs were performed for both the Rind and STI models with tracking.

3.6 Simulation results

In our investigations, we wanted to observe the peak response of the two models and the corre-
sponding distance between the object and the observer. The aim was to analyze whether or not a
thresholding scheme may be employed with a collision detection algorithm to judge an imminent
collision.

3.6.1 Rind model without tracking

In this set of simulations a single 2D object approached the viewing plane from different starting
positions within the virtual arena as described in the previous section. Figure 3.7a shows the mean
and standard deviation of the peak response (R̄peak and σR) of the Rind model versus minimum
distance from the observer (dm). The plot was truncated to show data only nearer than 25 m from
the observer. For distances greater than 25 m, the peak response was close to zero. The variance
(σ2

R) for distances smaller than 7 m from the observer are 72.5% to 113% of the mean R̄peak. These
large variances suggest that the model often responded more weakly to a closer object than it did
to a farther one. Another way of looking at the data is by plotting the R̄peak versus the distance
at which that maximum response occurred (dp). Figure 3.7b shows this data. We again note that
for distances up to 12.5 m from the observer, the variance is sometimes larger than the R̄peak. For
the case of an imminent collision (distance from the observer < 5 m, shown by a dashed vertical
line in the figure), the variance of the model is 1.87 times its R̄peak and overlaps with the peak
response values at distances greater than 10 m. The large variance of the peak response makes
the determination of a threshold for collision impossible. This illustrates the limitation of the Rind
model.

3.6.2 STI model without tracking

The STI model was simulated utilizing the same arena. Figure 3.8a show the R̄peak and σR of the
STI model versus the minimum distance from the observer. Figure 3.8b show the R̄peak and σR

versus the distance at which that response was elicited. The plots were truncated to show data only
nearer than 25 m from the observer. As before, for distances greater than 25 m, the peak response
was close to zero. Similar to the Rind model, we find that the R̄peak of the STI model has large
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Figure 3.7. Mean peak response R̄peak (denoted by circles) and standard deviation σR (denoted by error
bars) of the Rind model versus the distance from the observer. (a) R̄peak of the Rind model versus the
minimum distance from the observer the object ever reached. (b) R̄peak of the Rind model versus the
distance from the observer at which the peak response was attained. The dashed vertical line denotes the
distance at which collision is imminent.
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Figure 3.8. Mean peak response R̄peak (denoted by circles) and standard deviation σR (denoted by error
bars) of the STI model versus the distance from the observer. (a) R̄peak of the STI model versus the minimum
distance from the observer the object ever reached. (b) R̄peak of the STI model versus the distance from the
observer at which the peak response was attained. The dashed vertical line denotes the distance at which
collision is imminent.
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variance. The first two data points in Figure 3.8b do not show any variance because they represent
two individual cases and therefore, we do not include them in our analysis. For the case of an
imminent collision (distance from the observer < 5 m, shown by a dashed vertical line in the figure),
the σR is as large as 53% to 71% of the R̄peak value. The variance of R̄peak for these distances can
be seen to overlap with the variance at distances larger than 10 m. This re-emphasizes the point
that the threshold determination for the STI model for all possible collision scenarios is impossible.

Thus, we see that as expected from our analysis in Sections 3.1 and 3.2, both the models have
severe limitations that must be addressed before they can be implemented as a threshold based
collision avoidance system. We test the models with tracking capability in the next two sections.

3.6.3 Rind model with tracking

We simulated the Rind model equipped with a tracking algorithm as described in Section 3.5. The
simulation sets were the same as those used for testing the Rind model without tracking. The R̄peak

and σR for the Rind model with tracking versus the minimum distance from the object are shown
in Figure 3.9a. The R̄peak values reach their maximum at a distance of 4.48 m from the observer.
We have used Equation 3.18 to fit the data up to the peak with fitting parameters K1 = 8.45 and
d0 = 5.72 m. To analyze why we see a maximum in the R̄peak values, we plotted R̄peak versus
the distance at which the response was recorded as shown in Figure 3.9b. We find that the R̄peak

increases linearly as a function of distance. A linear fit as described by Equation 3.19 with fitting
parameters m = 0.5945 and c = 11 m is also plotted in the figure (dashed line). This plot does not
show a roll-off which means that objects that came close may have been the ones that were flying
past the observer not threatening a collision. The tracking algorithm allows the rotation of the
sensor plane up to an angle of ±45◦ beyond which the simulation is terminated and the approaching
object is deemed not a threat. These cases are responsible for the low values of R̄peak at distances
less than 5 m in Figure 3.9a. However, the linear trend of R̄peak with large variance shows that even
though the model performs much better than the one without tracking, the determination of the
threshold is not trivial. The threshold may be set at an R̄peak value of 6. However, this may raise
false alarms for some objects as far back as 8.96 m. We must note that we simulated scenarios that
varied in approach speeds by almost one order of magnitude (2 m/s to 20 m/s) at random approach
angles, and even though the response of the Rind model with tracking is far from ideal, it is still
usable.

3.6.4 STI model with tracking

In this set of simulations, we simulated an STI model with tracking. The simulation parameters
were the same as the ones used in simulating the STI model without tracking. The plot of R̄peak

and σR for the STI model with tracking versus the minimum distance from the object is shown in
Figure 3.10a. The R̄peak almost follows an inverse relation as seen in Equation 3.18 with fitting
parameters K1 = 3.2 and d0 = 1.24 m. In Figure 3.10b, the R̄peak is plotted with the distance at
which the response occurred. The data almost exactly follows the above mentioned equation with
fitting parameters K1 = 2.5 and d0 = 3.584 m as shown by the dashed trend line in the figure.We
find that even though the variance for the maximum R̄peak is large (distance < 5 m), it does not
overlap with the range of values for distances outside that range. Therefore, the STI model with
tracking may be used as a reliable threshold based collision avoidance system and the improvement
with respect to the STI model without tracking is dramatic. Figure 3.10b shows that if the threshold
is set at 1.6, all objects that pose a threat of imminent collision (distance < 5 m) will be detected.
The better performance of the STI model with tracking with respect to the Rind model with tracking
is due to its explicit computation of expansive motion. Once the tracking model neutralizes any
motion in the x-y plane, the expansive motion computed on the projected image exactly estimates
the motion towards the viewing plane as discussed in Section 3.4.
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Figure 3.9. Mean peak response R̄peak (denoted by circles) and standard deviation σR (denoted by error
bars) versus the distance from the observer for Rind model with tracking. (a) R̄peak versus the minimum
distance from the observer the object ever reached. The dashed line represents a non-linear curve used to fit
data as explained in the text. (b) R̄peak versus the distance from the observer at which the peak response
was attained. The thick dashed line represents a linear fit as explained in the text. The thin dashed vertical
line denotes the distance at which collision is imminent.
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Figure 3.10. Mean peak response R̄peak (denoted by circles) and standard deviation σR (denoted by error
bars) versus the distance from the observer for STI model with tracking. (a) R̄peak versus the minimum
distance from the observer the object ever reached. The dashed line represents a non-linear fit to the data.
(b) R̄peak versus the distance from the observer at which the peak response was attained. The thick dashed
line represents a non-linear fit to the data. The thin dashed vertical line denotes the distance at which
collision is imminent. (see text for details)
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Figure 3.11. Mean peak response R̄peak (denoted by circle) and standard deviation σR (denoted by error
bar) versus the distance from the sensor plane for noisy tracking. The dashed line in both the cases represents
respective non-linear fits as described in the text. (a) R̄peak versus the distance from the observer at which
the peak response was attained for the Rind model with a noisy tracking algorithm. (b) R̄peak versus the
distance from the observer at which the peak response was attained for the STI model with a noisy tracking
algorithm.

In the next section, we test collision models for the case of noisy tracking.

3.6.5 Effect of noisy tracking

In all the simulations with tracking discussed above, the tracking algorithm was able to exactly
compute the position of the approaching object. This might not necessarily be achievable in a
complex real-world scenarios with a non-ideal tracking algorithm. To test whether a less accurate
tracking algorithm would be as effective as an exact algorithm, we introduced measurement noise
in the centroid computation as detailed in Section 3.5. The results from this set of simulations for
both the Rind and the STI model with tracking are shown in Figure 3.11a and 3.11b, respectively.
The plots indicate that the imprecise tracking algorithm was still sufficient to make the response of
the collision avoidance algorithms behave almost monotonically with the distance from the object.
The R̄peak values for the Rind model with tracking in this case almost follow an inverse relation
with distance as per Equation 3.18, with fitting parameters K1 = 25 and d0 = 4.6 m. For the STI
model with tracking, the R̄peak also follows the same equation with fitting parameters K1 = 3 and
d0 = 2.36 m. We note that the STI model with tracking is more affected by the noisy tracking
algorithm than the Rind model with tracking. This is expected because the response of the STI
model with tracking relies totally on the tracking parameters to cancel the effect of motion parallel
to the sensor plane. The Rind model with tracking on the other hand has a local inhibitory network
that can suppress weak horizontal motion due to noise in tracking.

3.7 Summary

In this chapter, we developed a mathematical framework to analyze the limitations of the collision
avoidance models described in Chapter 2. The major shortcoming of any collision avoidance model
is due to an inherent limitation of representing three-dimensional motion in the real world on a
two-dimensional sensor array. The analysis presented here shows that if the response of collision
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avoidance models can be made dependent on the distance of an obstacle from the observer, this
problem may be solved. We have shown how tracking may be used with the Rind and STI models
to indirectly relate their responses with distance. We have also shown that the STI model with
tracking performs much better than the Rind model with tracking for an ideal tracking algorithm.
However, the performance of the Rind model with tracking was comparable with the STI model
with tracking when a noisy tracking algorithm was used. We have also shown that the improvement
in the performance of the models with tracking capability is significant as compared to the models
without tracking, even in the case of imprecise tracking.

In the next chapter, we present a camera-based physical system that implements the STI and
Rind models with tracking. We also compare the performance of the two algorithms with their
non-tracking counterparts.
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Chapter 4

Camera-based implementation of collision avoidance

models

In the previous chapter, we described Rind and STI models with tracking capability that may be
used to compute a measure of the distance from an obstacle to an observer. However, the Rind
and STI models with tracking capability were simulated for very simple scenarios (a white obstacle
approaching in a non-textured black background). In this chapter, we test the validity of the same
models through an implementation of a camera-based system that utilizes a tracking algorithm to
detect collisions with a physical object. The physical implementation of the models is important
because we can never fully simulate all aspects of a true collision. The change in the contrast of an
approaching object due to its orientation with respect to a light source, or the effect of non-uniform
motion of an approaching object, for instance, are difficult to model in an artificial environment.
Thus, a system implementation of the algorithms helps us understand the problem better and make
necessary changes to improve upon the existing models.

We have also implemented the STI and Rind models without tracking as base algorithms with
which we compare our test results. Experimental results for a variety of collision and non-collision
scenarios are described for all four algorithms.

4.1 System details

In this section, we describe the physical system that was developed to test the Rind and STI models.
All algorithms were tested for collision and non-collision scenarios. The tracking-capable collision
detection algorithms were implemented so as to keep the approaching object in the center of the visual
field. The setup of the experiment is shown in Figure 4.1. The hardware comprises a web-camera
(Labtec webcam 6.0.1) as a visual sensor, a servo motor (Futaba HS700BB) connected at the base of
the webcam for tracking, a pulley and DC motor arrangement from which the obstacle is suspended,
and an Acer laptop (Microsoft Windows XP OS, 1.66 GHz, dual-core Intel Centrino processor) for
processing the algorithms. The collision detection and tracking algorithms were implemented in
software using the Visual C++ package (Visual Studio, Microsoft).

The setup shows a DC motor and pulley arrangement that allows for the repeatability of exper-
iments and was used to control the speed at which the object translates in the visual field. This
was done by adjusting a variable power supply which controlled the rotational speed of the pulleys.
The object was suspended from a string which went around the two pulleys (see Figure 4.1b). The
motion of the string added an additional swinging movement (parallel to the camera plane) to the
object which was random in nature. This made each run of an experiment slightly different even
when the speed of the servo and pulley system were the same. The swinging motion also affected
the orientation of the object with respect to the ceiling lights that were used for illumination. This
in turn affected the contrast of the object as it moved and added more complexity and randomness
to each experimental run.

The collision detection system uses a webcam as a visual sensor. The field of view of the camera
was ±23◦ about an axis normal to its sensor plane. The webcam can operate at up to 20 frames
per second (fps) while capturing images of size 352 × 288. In order to process images at 15 fps, it
was necessary to downsample each frame by a factor of two such that the algorithms operated on
an image size of 176× 144.
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Figure 4.1. Experimental setup of the collision detection experiment. (a) Diagram of the setup. Two
pulleys (P1 and P2) control the trajectory of the obstacle (Ob), a blue colored disc. Pulley P1 was mounted
on a DC motor (S1) and the speed of the obstacle was set by varying the voltage of a power supply. A webcam
(W) mounted on a servo motor (S2) sent visual input to a laptop. The laptop runs custom developed software
to process the visual information and detect an impending collision. For the algorithms with tracking, the
laptop sent control signals to the servo motor S2 via a servo control board. (b) Photograph of the setup.
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We implemented a simple tracking algorithm to follow a specifically colored (blue) object by
using a centroid detection scheme. A more sophisticated tracking algorithm could be used to tackle
more general scenarios (Higgins and Pant, 2004b). The simple algorithm is beneficial in that it does
not critically affect the computational speed of the system, and still provides reasonable performance
to compare the Rind and STI algorithms with and without tracking capability. The algorithm tracks
an object by utilizing a servo motor connected at the webcam’s base. This single servo motor allows
for only one degree of freedom for the webcam: rotation about its vertical axis. The input frame
from the webcam has three color channels: red, green, and blue. We used only the blue color plane
to track the object within the frame. The object itself was chosen to be a bright blue colored
disc. Since the webcam can only rotate about its vertical axis, the tracking algorithm computed a
positional parameter based on the centroid of the blue pixels in the blue channel of every frame.
The centroid was computed by using the following formula:

xc =

∑
i xi ·

∑
j T (I(xi, yj))∑

i

∑
j T (I(xi, yj))

(4.1)

where I(xi, yj) is the intensity of the blue pixel at image location (xi,yj), and

T (u) =
{

u u > 0.95Imax

0 u ≤ 0.95Imax
(4.2)

with Imax as the maximum intensity in the entire blue channel of the image.
This centroid value was then processed by a PD (proportional-derivative) controller treating

xe = (xc − xm) as an error signal, where xm is the center of the image along the horizontal axis
and is considered the origin. The differential error signal ẋe was generated by taking the difference
between the error signal of the current and previous frame. The output signal Scnt was generated
by using the following relationship:

Scnt = KP · xe + KD · ẋe (4.3)

where KP and KD are proportional and derivative gain constants, respectively. The values of KP

and KD were experimentally determined. A servo control board (USB 16-servo controller, Pololu
Corporation) was used to send this signal to the servo motor that controlled the orientation of the
webcam. The response of the algorithms with tracking were affected by the frame rate at which the
webcam captured images. A frame-rate of 15 fps was not sufficient to show large motions near the
camera in a smooth manner. This caused large adjustment in the camera angle to track the object.
This jerkiness in the motion of the camera sometimes has a negative effect on the response of the
algorithms with tracking.

A snapshot of the graphical user interface (GUI) used to control the experiments is shown in
Figure 4.2. The software allows for the response of the algorithms to be recorded either at each
frame or as the peak of a running average of the algorithm’s response during any experiment. The
length of the running average window was set to three. This peak running-average was used to
compare the performance of the algorithms.

4.2 Results

In this section, we present results from experiments that demonstrate the effectiveness of tracking
in collision avoidance. A comparison is made between the algorithms with and without tracking.

4.2.1 The STI algorithm

The STI algorithm with and without tracking was evaluated under the same test conditions. The
object (blue disc) was made to move at a speed of 17 cm/sec. The flat surface of the disc was made
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Object

Camera's view

User Controls

Tracking

parameters

Figure 4.2. A snapshot of the GUI for the collision detection algorithms. The webcam’s image is displayed
in the center and shows the approaching obstacle. The parameters for the tracking algorithm may be
adjusted using the sliding bars. The user has control over when to start recording data and which algorithm
to select based on a combination of tick-boxes.
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Direct Collision

Oblique

       Collision

Non-Collision

W

Figure 4.3. Different approach trajectories of an object. The lines indicate a direct collision, an oblique
collision, and a non-collision approach towards a webcam (W).

to face the webcam at the start of every experiment. However, any small change in the orientation
due to the self-motion of the object was not corrected for. We first present response traces for typical
direct-collision, oblique-collision, and non-collision cases as shown in Figure 4.3.

Response traces were computed by taking an average of ten direct-collision approach cases. In
Figure 4.4a, the thin line shows the average response of the STI algorithm without tracking. The
thick line shows the response of the STI algorithm with tracking. As expected, the responses for both
with and without tracking cases are almost the same since the object is almost always in the center
of the visual field. The slight difference in the two traces originates due to the random swinging
of the object as it approaches the webcam. For the algorithm with tracking, the camera moves to
compensate this motion and thereby affects the response. The response peaks at roughly 1.2 seconds
before the collision at which instant the object occupies the entire visual field of the webcam. The
dashed line in the figure shows the distance of the object from the webcam. Note that the traces
show the response even after the object goes behind the webcam.

Figure 4.4b shows the average response for the object approaching at a slightly oblique trajectory.
Ten experiments were performed for the STI algorithm with and without tracking and the response
was averaged. The angle of approach was 10◦ off the line normal to the camera plane. Some part
of the object was always within the visual field of the camera throughout its approach. The thin
trace once again represents the response of the STI algorithm without tracking. The thick trace
represents the response of the same algorithm with tracking capability. It is clear that even with
a slightly oblique approach, the response of the simple STI algorithm is much smaller as compared
to a direct collision approach. However, the response trace for the STI algorithm with tracking is
similar to the case of direct collision trajectory. This is because the webcam was able to center the
approaching object in its visual field for the STI algorithm with tracking, thereby increasing the
net expansive motion seen by the camera. The peak in this case is more sustained because of the
camera motion which increased the response of the algorithm with tracking, as explained earlier.

We compare the above responses with the average response to a non-collision case. Again, ten
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Figure 4.4. Response of the STI algorithm with and without tracking averaged over 10 experiments each.
The average responses are plotted against time for direct collision, oblique collision, and no collision cases.
The thin line represents the frame-by-frame response of the simple STI algorithm. The thick line represents
the response of the STI algorithm with tracking. The response magnitude is shown on the left y-axis. The
dashed line shows the distance of the obstacle from the camera plane as a function of time. The distance
scale is shown on the right y-axis. Negative distances mean that the object is behind the camera. (a)
Response for a direct-collision scenario. The response tracks the approach of the obstacle and peaks roughly
a 1.2 sec before collision. (b) Response for an oblique approach scenario, with the angle of approach set
at 10◦. Note that the response of the algorithm with tracking is similar to the direct-collision case, while
it is much diminished for the non-tracking STI algorithm. (c) Response for a non-collision scenario. The
responses of the algorithm for both with and without tracking cases are significantly smaller than the direct
collision cases.
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experiments were performed for each case and the response traces were averaged. The trajectory was
set such that the object was visible in the view field for virtually the entire length of the experiment
as shown in Figure 4.3. It entered the view field from the right side and exited from the left, and was
always at a distance of ≥ 30 cm. Figure 4.4c shows the response traces. We find that the response
of the STI algorithm with tracking (thick line) is greater in magnitude when compared with the STI
algorithm (thin line). However, compared to the responses for direct and oblique collision, these
responses were much smaller in magnitude.

In an actual collision avoidance system, the decision to make a course correction has to be made
at some point. We have used the peak value from the running average of the response to discriminate
collision versus non-collision. The running average was computed for smoothing the raw responses
of the algorithm. This peak running-average value may be compared with a threshold to make a
decision to turn away from an obstacle when collision is imminent. Here, we compare the STI and
STI algorithm with tracking quantitatively by using peak running average as the figure of merit for
various collision and non-collision scenarios to answer this question: is it possible to reliably set a
threshold to detect the collision cases without raising a false alarm?

Figure 4.5 shows the mean and standard deviation of the peak running-average values recorded
for multiple experiments with the STI algorithm with and without tracking. The first pair of bars
in the figure show the data for non-collision experiments. Only ten experiments were conducted
for each case because the standard deviation of the peak running-average responses was small. The
object translated at a speed of 17 cm/sec in a trajectory such that it was always at a distance ≥ 30
cm. The mean response of the STI algorithm with tracking (gray bar) is about twice as large as the
response of the non-tracking algorithm (white bar). The response of the algorithm with tracking is
larger because of the motion of the camera while tracking.

The second pair of bars show the mean and standard deviation for ten direct-collision experiments
each. The responses for both the tracking and without tracking cases are comparable for this set.
The mean of the peak running-average values for the direct-collision case is at least three times that
for the non-collision case.

The third pair of bars show the mean values of the peak running-average response of the algorithm
for an oblique trajectory where the starting position of the object was within ±5◦ of the axis normal
to the sensor plane. Each algorithm was tested for 20 experiments because the standard deviation
for oblique trajectories was larger than the standard deviation for direct and no collision trajectories.
The responses for the algorithm with and without tracking are not too different from each other
and are comparable to the mean values of the direct-collision trajectories. In this case, the angle
of approach is narrow and during the last phase of approach, the obstacle is almost in the center
of the visual field and hence elicits a strong response for both the cases. However, if the angle of
approach is slightly increased to be between 8◦ and 10◦ off-axis, the mean of the peak running-
average values are very different for the tracking and non-tracking cases as seen in the fourth pair
of bars in Figure 4.5. Data was collected from 20 experiments for each case. The mean of the peak
running-average value for the STI algorithm without tracking reduced by almost half of its value as
compared to the case of oblique trajectories within 5◦ of the normal axis. The mean value of the
STI algorithm with tracking, on the other hand, is almost unchanged. This was due to the ability
of the algorithm with tracking to keep the object in the center of its visual field, thereby increasing
the peak running-average response.

This is also witnessed in the fifth and sixth pair of bars in Figure 4.5. The angle of approach
was increased to 15◦ and 20◦, respectively. The mean of the peak running-average value for the
STI algorithm without tracking for the latter case is even smaller than the no collision case. This
was due to the wide angle of approach of the object at the start of the trajectory. The mean of
the peak running-average for the STI algorithm with tracking remains almost unchanged from the
direct collision case.

Except for the oblique approach case from wide angles ( 20◦), the mean value of the STI algorithm
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Figure 4.5. Experimental data from the STI algorithm with and without tracking for seven scenarios. The
white bars show data for the STI algorithm without tracking, while the gray bars show data for the STI
algorithm with tracking. Standard deviation is indicated for each experiment. The thick line shows the
minimum threshold that needs to be set to detect all collision scenarios for the STI algorithm with tracking,
while the thin line shows the minimum threshold for the STI algorithm without tracking. The first pair of
bars show the mean response and the standard deviation for non-collision cases. The second pair shows the
mean and standard deviation for direct-collision cases. The third pair shows the response for an oblique
trajectory where the angle of approach was within ±5◦ of the camera axis. The fourth pair shows the mean
response for an oblique approach with the angle of approach between 8◦-10◦ off the camera axis. The fifth
and sixth pair show the responses at 15◦ and 20◦, respectively. The last pair shows the mean and standard
deviation of the response for a horizontally moving obstacle.

without tracking is still much larger than its mean for the non-collision cases shown by the first pair
of bars in Figure 4.5. This begs a question: is there any other advantage to the STI algorithm
with tracking if we can separate most of the collision cases from the non-collision cases by setting a
threshold for the STI algorithm without tracking?

To answer this question, we conducted another experiment where the object was made to move
horizontally across the visual field at a distance of 20-25 cm from the camera, at a speed of 17 cm/sec.
The motion of the object was parallel to the webcam and the object crossed the visual field of the
stable camera (in the STI algorithm without tracking) in less than 500 ms. The mean and standard
deviation of the peak running-average response for these non-collision experiments is shown by the
rightmost pair of bars in Figure 4.5. The responses for the STI algorithm with and without tracking
are almost equal in magnitude. The STI algorithm with tracking should have negated the horizontal
motion by following the object across the visual field of the webcam. However, due to the fast motion
of the object in the visual field, the webcam rotated by large angles. This self-induced motion is
responsible for the mean peak response of the STI algorithm with tracking being comparable with
its non tracking counterpart. This peak response is about half of the mean peak response for all
collision cases shown in the figure. The mean value of the peak running-average response for the
STI algorithm, on the other hand, is larger than its mean value for the oblique approach at angles
wider than 8◦!
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This is the defining difference between the algorithm with and without tracking. The STI algo-
rithm without tracking is unable to detect collisions for approach angles larger than 20◦ and raises
a false alarm when an object moves horizontally across the webcam at fast speeds. The thick hori-
zontal line in the figure shows the minimum threshold that is needed to detect all collisions for the
STI algorithm with tracking and the thin horizontal line shows the same for the same algorithm
without tracking. It is easy to see that the STI algorithm with tracking is able to distinguish all the
collision scenarios from the non-collision ones. However, the STI algorithm without tracking cannot
do so without raising false alarms. Tracking increases the capability of the STI algorithm to respond
reliably to collision scenarios and at the same time, reduce false alarms. We see that even with a
simple tracking algorithm the performance of the STI algorithm with tracking improves remarkably
and is in agreement with our simulation analysis of Chapter 3.

4.2.2 The Rind algorithm

In this section, we present the results from the Rind algorithm with and without tracking. The
experimental setup was the same as that used for the STI algorithm. The speed of the moving
object was set at 17 cm/sec. At the beginning of each run, the object was oriented such that its flat
surface faced the webcam. The responses were averaged over ten experiments for all the scenarios.

Figure 4.6a shows average response traces for the Rind algorithm with and without tracking in
a direct-collision scenario. The response of the simple Rind algorithm (thin line) is very similar to
the response of the algorithm with tracking capability (thick line). This is expected since the object
is always in the center of the view field of the camera in the case of a direct collision. The main
difference between these traces and those in the case of the STI algorithms is that here, the response
does not increase until the object is very close to the webcam. This is because the Rind algorithm
relies on the edge expansion to overwhelm its lateral inhibitory network. For the speeds that we
were able to generate in the experimental setup, this was not true until the object was very near
to the webcam. This practical limitation of the Rind algorithm has also been reported by other
authors (Cuadri et al., 2005a; Stafford et al., 2007b).

The average response for an object approaching at an oblique trajectory with the starting position
at angle of 10◦ is shown in Figure 4.6b. The object was always in the visual field of the camera
throughout its approach. The response of the Rind algorithm (thin trace) is much smaller than
that of the Rind algorithm with tracking (thick line). The tracking mechanism is able to keep
the approaching object in the center of the visual field. Hence, the response is sufficiently larger
with tracking. This again illustrates the importance of tracking in oblique approach scenarios. The
response peak for the average is smaller than observed for the direct collision case. This is because
the response of the algorithm with tracking peaked at different time instants for different experiments
due to the random swaying of the object as it approached. Upon averaging, this made the mean
response trace peak at a lower value but with a greater time spread.

Figure 4.6c shows the response curves for a typical non-collision case. The response of the Rind
algorithm with tracking (thick line) is comparable with the response of the Rind algorithm without
tracking (thin line) and is comfortably smaller than the response in the case of collision cases.

Next, we compare the mean of the peak running-average response for the Rind algorithm with
and without tracking for a set of collision and non-collision settings.

The first two pair of bars in Figure 4.7 show the mean and standard deviation of the response
of the algorithm with and without tracking for non-collision and direct-collision cases. A total of
40 experiments (10 for each case) were conducted. Each case differed in the starting position of the
object (between 140 to 100 cm from the camera) and the instantaneous speed of the object due to
its swinging motion, which was random. The mean value of the Rind algorithm without tracking
is shown as a white bar, while the response of the Rind algorithm with tracking is shown as a gray
bar. As expected, the response of the two algorithms are similar for both the cases. The difference
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Figure 4.6. Response of the Rind algorithm with and without tracking averaged over 10 experiments each.
The average responses are plotted against time for direct collision, oblique collision, and no collision cases.
The thin line represents the average frame-by-frame response of the Rind algorithm without tracking. The
thick line represents the average response of the Rind algorithm with tracking. The response magnitude is
shown on the left y-axis. The dashed line shows the distance of the obstacle from the camera plane as a
function of time. The distance scale is shown on the right y-axis. Negative distances indicate that the object
is behind the webcam. (a) Response for a direct-collision scenario. The response tracks the approach of
the obstacle and peaks just before collision. (b) Response for an oblique approach scenario, with the angle
of approach set at 10◦. Note that the average response of the Rind algorithm with tracking is much larger
than the response of the non-tracking algorithm (c) Response for a non-collision scenario. The responses for
both the cases are significantly smaller than the direct collision cases.
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Figure 4.7. Experimental data from the Rind algorithm with and without tracking for seven scenarios.
The white bars show data for the Rind algorithm without tracking, while the gray bars show data for the
Rind algorithm with tracking. Standard deviation is indicated for each experiment. The thick line shows
the minimum threshold that needs to be set to detect all collision scenarios for the Rind algorithm with
tracking, while the thin line shows the minimum threshold for the Rind algorithm without tracking. The
first pair of bars show the mean response and the standard deviation for non-collision cases. The second
pair shows the mean and standard deviation for direct-collision cases. The third pair shows the response
for an oblique trajectory where the angle of approach was within ±5◦ of the camera axis. The fourth pair
shows the mean response for an oblique approach with the angle of approach between 8◦-10◦ off the camera
axis. The fifth and sixth pair show the responses at 15◦ and 20◦, respectively. The last pair shows the mean
and standard deviation of the responses for a horizontally moving obstacle.

between the mean value for collision case and the non-collision case is larger than a factor of three
for both the algorithms.

The third pair of bars in Figure 4.7 shows the mean value for the oblique collision case when
the angle of approach is within 5◦ of the axis normal to the camera plane. The mean value of the
Rind algorithm without tracking is smaller than the direct-collision value by almost 30%. Also, the
standard deviation for the Rind algorithm in this case was about two-thirds of its mean value. This is
due to the action of the lateral inhibitory network in the Rind model that suppresses slow expansion
of the obliquely approaching object. The swinging motion of the object near the camera sometimes
caused the peak running-average value to be very high. The response of the Rind algorithm with
tracking is larger than the Rind algorithm without tracking by virtue of its keeping the object in
the center of the visual field.

The fourth pair of bars in Figure 4.7 shows the mean and standard deviation for an oblique
approach at an angle between 8◦-10◦. Similar to the STI algorithms, here too, the response of
the Rind algorithm without tracking is much weaker than the Rind algorithm with tracking. The
response is much smaller here because the Rind algorithm requires sustained increase in activation
of its excitatory units to overcome inhibition from its lateral units, which is absent here due to the
small increase in the object’s size for most of the approach. The response of the Rind algorithm with
tracking is not much different from the previous case. The standard deviation for oblique trajectories
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was large and depended on the swinging motion of the object.
The fifth and sixth pair of bars show the response of the algorithm for approaches at 15◦ and

20◦ angles. The mean of the peak running-average response of the Rind algorithm without tracking
decreases progressively as the approach angle increases. The response for approach at 20◦ angle is
smaller than the non-collision case because the object is at the edge of the visual field for virtually
the entire trajectory and the increase in the size of the edges is negligible. The mean of the peak
running-average response for the Rind algorithm with tracking is not much different for various
oblique approaches.

We again compare these oblique-collision responses to that of horizontal motion parallel to the
visual field of the camera. The rightmost pair of bars in Figure 4.7 show the response of the two
algorithms. The object moved parallel to the image plane at a distance of 20-25 cm from the camera.
The mean and standard deviation values for the non-collision horizontal motion are larger than the
oblique-collision (angle ≥ 8◦) cases for the Rind algorithm without tracking. The Rind algorithm
with tracking has about the same mean value as the Rind algorithm without tracking because of
self-induced motion due to large adjustments in the camera angle. However, the mean value is
still 50% smaller than in the case of oblique collisions. Thus, a threshold can easily be set for the
Rind algorithm with tracking while it is impossible to set a threshold for the simple Rind algorithm
without causing false alarms due to horizontal motion parallel to the camera plane. This is shown
by the horizontal lines in the figure that represent the minimum threshold that needs to be set to
detect all collisions. For the Rind algorithm with tracking, the minimum threshold unambiguously
discriminates all collisions from non-collisions (thick line). However, for the Rind algorithm without
tracking, distinguishing collisions from non-collisions by setting a simple threshold is impossible.

From our experiments with both the STI and Rind algorithms, we can conclude that tracking
clearly improves their collision detection performance. While a threshold is not easy to set for
the algorithms without tracking, it is clearly defined in the case of algorithms with tracking, thus
increasing the collision detection rate and at the same time, reducing false alarms.

4.3 Summary

The results from various collision and non-collision experiments clearly illustrate that by letting the
visual sensor align itself with an approaching object, the effectiveness of the algorithm is dramatically
improved. In our study, the performance of the STI algorithm with tracking was better than the
Rind algorithm with tracking. This we attribute largely to two factors. Firstly, the Rind algorithm
relies on edge detection and in our implementation, the low frame rate of the camera sometimes
blurred the motion which made edge detection difficult. Secondly, the lateral inhibitory network in
the Rind model always tries to suppress the response magnitude of the algorithm. In order to get
a strong response from this algorithm, the activation of its excitatory units must be large enough
to swamp the effect of inhibitory units. This goes back to the problem of edge detection. Since
the frame-rate of our input was not very high, the edge response was weak and so was the response
of the excitatory units. The STI algorithm with tracking, on the other hand, does better on both
accounts, and in general is an elegant algorithm for collision avoidance.

The primary observation from the experimental results and analysis presented up to this point
in the dissertation is that if the relative distance from objects to an observer in a scene are known,
it greatly facilitates collision avoidance. We have shown how tracking may be used with the Rind
and STI models to indirectly compute a measure of distance. This distance may also be computed
directly from motion parallax by utilizing the speed of objects in a scene. It has been suggested that
honeybees use a similar mechanism based on non-directional image speed for obstacle avoidance while
navigating through a tunnel (Srinivasan et al., 1993). The image speed is also utilized by honeybees
to reduce their speed while landing, and relay information about distances of food sources from
hives (Srinivasan et al., 1996, 2000). In the next chapter, we describe two neuronally based non-
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directional models that have speed dependent outputs and may be used by artificial systems for
obstacle avoidance.
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Chapter 5

Speed estimation by non-directional motion models

In the previous chapter, tracking was added to collision avoidance models based on the escape
response to detect collisions by indirectly computing object distances. However, escape response
based algorithms only provide a reflexive reaction to an imminent collision and therefore, their
use may require a sudden change in the orientation and speed of the observer. An autonomously
navigating robot is more likely to encounter a scenario where it has to navigate around obstacles
that may not be on an imminent collision course. In such cases, it is better to smoothly change the
trajectory of the robot. This may be performed by utilizing a direct computation of the relative
depth of objects in a scene based on their speed. The speed of an object on the sensor plane may
be computed by either solving an ill-posed problem of optical flow or by using a qualitative method
such as a spatio-temporal frequency based correlation model. Due to the qualitative equivalence of
the two schemes, shown by Verri and Poggio (1989), correlation-based models are more attractive.
There is a large body of evidence which indicates that insects also use spatio-temporal frequency
based correlation models (Reichardt, 1961; Adelson and Bergen, 1983; Borst and Bahde, 1986;
Reichardt et al., 1989). However, these correlation-based models have dissimilar responses to the
same speed at different spatial frequencies (Srinivasan et al., 1993). Despite this, it has been reported
that bees utilize the apparent angular image speed on their compound eyes to perform complicated
navigational maneuvers including collision avoidance (Srinivasan et al., 1991, 1997, 2000). Bees
match image speed on their left and right eyes to center their flight path when flying between two
walls. They hold the image speed on their eyes constant when in flight, and reduce their speed when
flying through a tapering tunnel. They use a similar mechanism for smooth landing (Srinivasan et
al., 2000). Insect scientists have long speculated that insects may compute the speed from a visual
image by either directional motion or non-directional motion computation (Srinivasan et al., 1993;
Single and Borst, 1998). Recent experiments have suggested that a non-directional mechanism may
be behind this speed estimation (Higgins, 2004; Dacke and Srinivasan, 2007). In this chapter, we
present two non-directional speed estimation models derived from the neuronally based EMD model
described in Chapter 1. The non-directional models presented here are simplified versions of the
earlier models reported by Higgins (2004) and Rivera-Alvidrez (2005). The simplifications that
we present here make these non-directional models respond to a broader range of speed and spatial
frequencies. This speed sensitive output may then be utilized to compute relative distance of objects
in a scene through motion parallax.

5.1 The NDM model

A non-directional multiplication (NDM) based computational model was proposed by Higgins (2004)
to explain how insects may compute image speed (see Figure 5.1a). For most correlation-based
models, the response is not speed dependent and linear speed response is very difficult to compute.
The mean response of the NDM model, on the other hand, has an almost linear relation with speed
for a range of spatial frequencies. The approximate linearity with speed may be used to compute
the relative depths of objects in a scene, and thereby avoid collisions. However, the basis of the
speed dependence of this model was not clear.

In this chapter we explore the mathematical basis of this speed dependence, and consider a
simplified NDM model that also responds linearly with speed for a range of spatial frequencies.
The simplification to the model comes in the form of removal of the low-pass filter (LPF) units
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Figure 5.1. Non-directional multiplication (NDM) based computational models. (a) Original NDM model.
Light intensity is measured by photodetectors (PD) and is then processed by a high-pass filter (HPF) stage.
Next, the response of two outer PD’s are low-pass filtered (LPF) and added (Σ). The summed output is
then multiplied (×) with the central PD’s response. This results in a speed dependent output (ONDM ).
(b) Simplified non-directional multiplication (Simplified NDM) model. As in the case of the original NDM
model, light intensity is measured by photodetectors (PD) and is then processed by a high-pass filter (HPF)
stage. In this case, no LPF units are present and the filtered response of two outer PD’s is directly added
(Σ). It is then multiplied (×) with the central PD’s filtered response. This results in a speed dependent
output (ONDMS).
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in the original model, as shown in Figure 5.1b. A single simplified NDM unit comprises three
photodetectors with high-pass filter (HPF) units. The response from the two lateral HPF units is
added and then multiplied with the central HPF unit’s response. The spatial summation of the
photodetector responses acts like a spatial low-pass filter and together with the temporal high-pass
filter, the output is speed dependent.

The response characteristics of a simplified NDM unit for a sinusoidal grating input are described
below.

5.1.1 Response characteristics

We studied the response of a simplified NDM unit to a sinusoidal grating

I(x, t) =
1
2

(1 + C sin(ωx · x + ωt · t)) (5.1)

where C is the contrast, ωx is the spatial frequency in cycles/space-unit, and ωt is the temporal
frequency in cycles/sec. This grating is offset such that it is strictly positive. The spacing between
adjacent photodetectors was set to be ∆. Thus the spatial phase difference between two adjacent
photodetectors was ωx · ∆. For simplicity of derivation and without loss of generality, we chose
∆ = 1. A first order temporal filter was employed as the HPF unit with a frequency-domain phase
response φ1(ωt), and magnitude response

h1 =
ωt · τ√

1 + (ωt · τ)2
(5.2)

where τ is the time constant of the HPF unit. The three adjacent HPF units shown in Figure 5.1b
are separated in space, and therefore their responses have both a spatial and a temporal phase term
as shown below:

SLH =
C

2
· h1 · sin(ωt · t + φ1) (5.3)

SCH =
C

2
· h1 · sin(ωt · t + ωx + φ1) (5.4)

SRH =
C

2
· h1 · sin(ωt · t + 2ωx + φ1) (5.5)

Adding the response from the two lateral units (SLH and SRH) and multiplying it with the
central unit SCH gives

ONDMS =
C2

4
· h2

1 · sin(ωt · t + ωx + φ1) · (sin(ωt · t + 2ωx + φ1) + sin(ωt · t + φ1)) (5.6)

Using common trigonometric identities and inserting the value of h1 from Equation 5.2, the
temporal mean response of the model can be shown to be

ŌNDMS =
C2

4
· (ωt · τ)2

1 + (ωt · τ)2
· cos(ωx) (5.7)

This may be compared to the temporal mean response of the original NDM model to the same
stimulus as derived by Higgins (2004):

ŌNDM =
C2

4
· (ωt · τ)2

(1 + (ωt · τ)2)2
· cos(ωx) (5.8)
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(b) Simplified NDM Model

Figure 5.2. Response of the NDM models against stimulus speed. (a) Mean response of the original NDM
model as the speed of the sinusoidal grating varies from -100 to +100 space-unit/sec. Multiple traces show
the response at spatial frequencies of 0.08 (maximum peak response), 0.14, 0.17, 0.2, and 0.23 (minimum
peak response) cycles per space-unit. (b) Mean response of the simplified NDM model against the speed of
a sinusoidal grating. The traces represent the response of the model for the same set of spatial frequencies
as in (a). The response is nearly linear with speed up to its peak response at which it saturates.
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Figure 5.3. Contour plots of the mean response of NDM models. (a) Contour representation of the mean
response of the original NDM model with varying speed (horizontal axis) and spatial frequency (vertical
axis). The curves parallel to the vertical axis show that the response is independent of the spatial frequency
in that range. The contour values for spatial frequencies higher than 0.25 cycles/space-unit are negative. (b)
Contour plots of the mean response of the simplified NDM model. Notice that the traces become parallel
to the horizontal axis in this case as the response saturates at its peak value. The contour values for spatial
frequencies higher than 0.25 cycles/space-unit are negative.
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Figure 5.4. Comparison between 0.52/ωx and cos(ωx) for a range of spatial frequencies ωx.

Figure 5.2 shows the mean response of the original and the simplified NDM models plotted
against the speed of a sinusoidal grating stimulus, which is a ratio of the temporal frequency and
spatial frequency (v=ωt/ωx). As compared to that of the original model, the mean response of the
simplified model saturates at a higher speed as seen in the figure.

Figure 5.3 shows the mean response of the models plotted as contour lines when the spatial
frequency and the speed of the stimulus were varied. The contours in the figure that are parallel to
the vertical axis represent a spatial frequency independent response. Again, the results show that
in comparison to the original model, the simplified model saturates at higher speeds against spatial
frequencies as evidenced by the vertical lines in the plot. Note that in the case of the simplified
NDM model, the lines become parallel to the horizontal axis. Thus, unlike the original NDM model
response which peaks and then falls, the simplified model’s response peaks and saturates. This
results in an unambiguous representation of speed up to the maximum response of the model. This
is a distinct advantage over the original NDM model whose response level may be the same at two
speeds owing to the peaking and falling of its mean response.

We have investigated the mathematical basis of this speed dependence which was not clear in
the original model. The expression for the mean response of the simplified NDM model (Equation
5.7) has ωt and cos(ωx) terms. We have plotted 1/ωx and cos(ωx) against the spatial frequency
ωx in Figure 5.4. We find that the slopes of these two curves for a range of spatial frequencies are
roughly the same. Thus, for this range we can replace cos(ωx) with 1/ωx. We can then isolate an
ωt/ωx term (the stimulus speed) from the expression, such that it becomes

ŌNDMS ≈ C2

4
·
(

ωt

ωx

)
· ωt · τ2

1 + (ωt · τ)2
(5.9)

At low temporal frequencies, (ωt · τ)2 ¿ 1 and therefore the output varies as a function of
(ω2

t /ωx) which increases superlinearly with speed (ωt/ωx). As the temporal frequency increases
towards ωt · τ ≈ 1, the output becomes proportional to 1/ωx and saturates at different levels based
on the spatial frequency (see Figure 5.2b). Thus, we see that for a range of spatial and temporal
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frequencies, the mean response of the simplified NDM model varies monotonically with speed.

5.1.2 Flicker response

For reliable collision avoidance, we would prefer that the model responds to actual stimulus motion
and not simply to a sudden change in the light intensity. Ideally, the response of a motion model
to flicker should be much weaker than its response to a regularly moving pattern. We investigated
this by considering a counterphase sinusoidal flicker stimulus

If (x, t) =
1
2
· (1 + C · sin(ωf · t) sin(ωx · x)) (5.10)

where ωf is the flicker frequency in cycles/sec and ωx is the spatial frequency in cycles/space-unit.
Following the derivation of Higgins (2004), the mean output of the model for this stimulus can be
shown to be

ŌNDMSf
=

C2

4
· (ωf · τ)2

1 + (ωf · τ)2
· cos(ωx) · sin2((p0 + 1)ωx) (5.11)

where p0 is the position of the leftmost photodetector unit. Since sin2((p0 + 1)ωx) ≤ 1, therefore,

ŌNDMSf
≤ ŌNDMS (5.12)

For the original NDM model, the response to the same flicker stimulus may be shown to be
(Higgins, 2004)

ŌNDMf
=

C2

4
· (ωf · τ)2

(1 + (ωf · τ)2)2
· cos(ωx) · sin2((p0 + 1)ωx) (5.13)

The ratio of the response of the model between stimulus motion and flicker is the same as that
for the simplified NDM model. The response of the original model is no stronger than the motion
response and if we average the response over space, the flicker response is always weaker than the
motion response. Much like the original NDM model, if we average the response of several simplified
NDM units over space, their mean response will also be stronger to motion than flicker.

5.2 The NDS model

Rivera-Alvidrez (2005) proposed a non-directional summation (NDS) model that was derived from
the neuronally based EMD model (Higgins et al., 2004) described in Chapter 1. Instead of a
multiplication unit, this model has a summation unit (see Figure 5.5a) that is comparable with
the transmedullary neuron Tm1 in the medulla of the fly brain. We have simplified this model by
removing the LPF unit from the lateral photodetector paths: the same simplification as in the NDM
model. As shown in Figure 5.5b, the photodetector signals are processed through high-pass filter
units and then added together. The amplitude response of this unit is speed dependent for a range
of spatial frequencies.

Next, we describe the response characteristics of the simplified NDS model for a sinusoidal grating
input.

5.2.1 Response characteristics

We study the response characteristics of a simplified NDS unit by deriving its response to a sinusoidal
grating I(x, t) given by Equation 5.1. The HPF unit is implemented as a first order high-pass filter
and its frequency-domain magnitude response is the same as given by Equation 5.2. The output
responses of the HPF units are the same as in Equations 5.3, 5.4, and 5.5. Summing the responses
from the three HPF units, we get

ONDSS =
C

2
· h1 · sin(ωtt + ωx + φ1) · (sin(ωtt + φ1) + sin(ωtt + 2ωx + φ1)) (5.14)
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Figure 5.5. Non-directional summation (NDS) based computational models. (a) Original NDS model.
Light intensity is measured by photodetectors (PD) and is then processed by a high-pass filter (HPF) stage.
Next, the response of two outer PD’s are low-pass filtered (LPF) and added (Σ). The summed output is
then added (Σ) with the central PD’s response. (b) Simplified Non-directional summation (NDS) model. As
in the case of the original model, light intensity is measured by photodetectors (PD) and is then processed
by a high-pass filter (HPF) stage. In this case, no LPF units are present and the filtered response of two
outer PD’s are directly added (Σ). The summed output is then added (Σ) with the central PD’s filtered
response.
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(b) Simplified NDS Model

Figure 5.6. Amplitude response of the NDS models against stimulus speed. (a) The original NDS model.
Multiple traces represent the response of the model at spatial frequencies of 0.08 (maximum peak response),
0.14, 0.17, 0.2, and 0.23 (minimum peak response) cycles per space-unit. (b) The simplified NDS model.
The curves represent the response of the model at multiple spatial frequencies same as those in (a). The
response of the model is nearly linear with speed up to its maximum response at which it saturates.

Simplifying and taking the amplitude of the above expression, we get

ÔNDSS =
C

2
· ωt · τ√

1 + (ωt · τ)2
· (1 + 2 cos(ωx)) (5.15)

This may be compared to the amplitude response of the original NDS model to the same stimulus
as derived by Rivera-Alvidrez (2005):

ÔNDS =
C

2
· ωt · τ
1 + (ωt · τ)2

·
√

4[cos2(ωx) + cos(ωx)] + (ωt · τ)2 + 1 (5.16)

Figure 5.6 shows the amplitude response curves at different spatial frequencies against the speed
of the stimulus for both the original and the simplified NDS models. It is easy to see that the response
of the simplified model (Figure 5.6b) saturates at higher speeds as compared to the response of the
original NDS model. Figure 5.7 shows contour plots of the amplitude against the spatial frequency
and the speed of the sinusoidal grating. The amplitude response of the original NDS model at
high spatial frequencies is highly nonlinear and non-monotonic. This is because the square-root
term in Equation 5.16 depends nonlinearly on the cosine of the spatial frequency. The response of
the simplified unit, on the other hand, increases linearly with speed (contour lines parallel to the
vertical axis in Figure 5.7b) and saturates at its peak value as seen by the contour lines parallel to
the horizontal axis.

As in the case of the simplified NDM model, here too the response is nearly linear with speed.
This is due to the slope of 1/ωx and (1+2 cos(ωx)) being quantitatively close to each other as shown
in Figure 5.8. Therefore, for a certain range of spatial frequency we can replace (1 + 2 cos(ωx)) by
1/ωx and extract the speed term from Equation 5.15 to get

ÔNDSS ≈ C

2
·
(

ωt

ωx

)
· τ√

1 + (ωt · τ)2
(5.17)

With this approximation, for low temporal frequencies we have (ωt · τ)2 ¿ 1, and therefore
the output is directly proportional to speed (ωt/ωx). As the temporal frequency increases so that
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Figure 5.7. Contour plots of the amplitude response of NDS models with varying speed (horizontal axis)
and spatial frequency (vertical axis). (a) The original NDS model. The contours parallel to the vertical
axis show that the response is independent of the spatial frequency in that range. (b) The simplified NDS
model. Notice that the traces become parallel to the horizontal axis in this case as the response saturates
at its peak value.
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Figure 5.8. Comparison between 1.8/ωx and (1 + 2 cos(ωx)) for a range of spatial frequencies (ωx).
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ωt ·τ À 1, the output of the simplified NDS model depends only on the spatial frequency term 1/ωx,
and therefore saturates at a different level based on the spatial frequency of the stimulus. Thus the
simplified NDS model has a more linear response to speed than the simplified NDM model.

5.2.2 Flicker response

The amplitude response of the simplified NDS model to a counterphase flicker stimulus as shown in
Equation 5.10, with the leftmost photodetector positioned at p0, is

ÔNDSSf
= C · (ωf · τ)√

1 + (ωf · τ)2
· (1 + 2 cos((p0 + 1))ωx) · sin((p0 + 1)ωx) (5.18)

Comparing this response to the motion response shown in Equation 5.15, we have

ÔNDSS ≤ ÔNDSSf
(5.19)

The response of the original NDS model to the same flicker stimulus may be shown as (Rivera-
Alvidrez, 2005)

ÔNDSf
=

C

2
· (ωf · τ)
1 + (ωf · τ)2

·
√

4[cos2(ωx) + cos(ωx)] + (ωf · τ)2 + 1 · sin((p0 + 1)ωx) (5.20)

This response is weaker than the motion response shown in Equation 5.16 by a factor of sin((p0 +
1)ωx), the same ratio as in the case of the simplified model.

A comparison between the counterphase flicker and sinusoidal grating responses for both the
simplified NDS and NDM models is shown in Figure 5.9. The flicker responses in both the simplified
NDM and NDS models are considerably weaker than the motion responses. As compared to the
original models, the response of both the simplified NDM and NDS models have the same ratio
between motion and flicker.

5.3 Summary

The simplifications we have made to the original NDM and NDS models make their responses speed-
sensitive up to a higher speed without sacrificing their ability to discriminate motion from flicker.
The response also saturates at its peak value, and thus provides an unambiguous representation of
speed. The speed-dependent output of the simplified non-directional models may be used in artificial
systems to estimate relative depth based on motion parallax. This relative depth information may
be used by a collision avoidance model to detect collisions more reliably.

For a real-time application, a software based implementation of these models may not be efficient.
It may be more useful to design a chip that computes the image speed in real-time. In the next
chapter, we present an analog VLSI implementation of these models and show their characterization
results.
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(a) Simplified NDM model

(b) Simplified NDS model

Figure 5.9. Comparison of the response of the simplified non-directional models to flicker and motion. (a)
The flicker response of the simplified NDM model is represented by thin lines while the response to motion
is shown by the thick traces. Multiple curves are responses at spatial frequencies 0.17, 0.14, 0.12, and 0.07
cycles per space-unit. The ratio of the mean response for motion and flicker is the same as that for the
original NDM model. (b) The simplified NDS model’s response to flicker and motion stimuli at the same
spatial frequencies as above. Again, the thin curves represent flicker responses and the thick curves represent
motion responses. The ratio of the mean response for motion and flicker is the same as that for the original
NDS model.
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Chapter 6

Analog VLSI implementation of speed estimation sensors

The non-directional models described in the previous chapter may be implemented in hardware
by utilizing a conventional architecture for visual navigation. Such a conventional system usually
employs an analog visual sensor communicating with a digital processor through an analog-to-digital
converter. For a high resolution visual sensor operating on a limited power budget, the cost of high-
speed data transfer and processing time is often a bottleneck. The insect visual system solves this
problem in an elegant fashion. It houses both the sensor (photoreceptor) and the processing elements
(neurons) in close proximity and processes the visual information in parallel. Also, the computation
on the transduced visual signal is performed in the analog domain and with very little energy cost.
This motivates the engineering of analog VLSI chips that have both the data acquisition sensor
and the processing circuitry on the same die. Such neuromorphic architectures utilize an array of
sensor circuits to transduce and parallel process the visual information in the image focal plane
itself. This bypasses the problems of data communication and analog-to-digital conversion and
makes the neuromorphic system faster and more power efficient. Also, since these systems utilize
analog circuits to process the data, their output may be used to directly create a navigation control
voltage for an autonomous robot. Neurobiological algorithms have been successfully implemented
for the navigation of autonomous robots and in the design of visual sensors (Horiuchi et al., 1992;
Kramer et al., 1995; Higgins and Pant, 2004a; Harrison, 2005).

In this chapter, we present the design of an analog VLSI speed sensor that may be used for
obstacle avoidance by estimating relative depth of objects in a scene. This chip implements the
non-directional models discussed in the previous chapter. An analysis of the circuit components and
the characterization results from the chip are also presented. The initial results from this chip have
been reported previously in Pant and Higgins (2007).

6.1 Circuit architecture

A chip incorporating both the non-directional multiplication (NDM) and non-directional summation
(NDS) units discussed in Chapter 5 was fabricated in a 0.18 µm CMOS process through MOSIS
on a 4×4 mm2 die. The chip implements the original NDS and NDM models which have low-pass
filter units. However, since the low-pass filter circuits on the chip can be turned off by electronically
changing a bias voltage, we were also able to implement the simplified NDM and NDS models. The
two pixel grids were interleaved with each other as shown in Figure 6.1a. The size of each grid was
70×70, and the total size of the array was 140×140.

Each pixel on the chip computes a nondirectional motion output with respect to its adjacent two
pixels of the same type (see Figure 6.1b). An adaptive photoreceptor circuit (APR) transduces light
incident on a pixel into an electrical signal. This circuit can operate over five orders of magnitude
of light intensity and has bandpass temporal frequency characteristics (Delbrück and Mead, 1993).
A gm-C type first-order low-pass filter (LPF) with tunable time constant implements the next
computational block. In the case of an NDS pixel, the response of two adjacent LPF circuits are
summed with the output of the central photoreceptor circuit. The computation of the amplitude
response was performed by a current-mode absolute value circuit (ABS) in each NDS pixel. The
NDM pixel takes the sum of two adjacent LPF circuits and multiplies it with the output of the
central photoreceptor circuit. To implement the simplified NDM and NDS pixels, the LPF circuit
could simply be turned off so that it passes the signal unchanged. A single-transistor gate (S) in each
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Figure 6.1. Block diagrams of the chip architecture. (a) Floor plan of the chip showing the NDS and NDM
pixels arranged in an interleaved fashion. The vertical and horizontal scanners allow for the selection of a
pixel(s) by external digital inputs. The output from the chip is a current that is processed by a current
sense amplifier to generate a voltage signal. (b) Internal blocks within the NDS (white background) and
NDM pixels (gray background). An adaptive photoreceptor (APR) transduces the incident light intensity
into an electrical signal. The output of this circuit has bandpass temporal frequency characteristics and
therefore no explicit high-pass filter circuit was required on the chip. In the NDS pixel, this signal is then
summed with the low-pass filter (LPF) output of the two adjacent NDS pixels. The LPF units in all the
pixels may be turned off to implement the simplified NDS and NDM pixels. This signal is further processed
by an absolute value circuit (ABS) in the NDS pixels. In the case of an NDM pixel, the LPF outputs from
the two adjacent NDM pixels are added and then multiplied with the output of the central APR. A single
transistor switch (S) is used to route the output from a pixel to the external current sense amplifier. The
peripheral scanner circuitry regulates the opening and closing of the switches (S) based on external digital
inputs.
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Figure 6.2. Adaptive Photoreceptor circuit. (a) Voltage fluctuations caused by the photodiode at the gate
of the transistor Mn are amplified by the Early voltage amplifier (Mn and Mp). This signal is fed back to the
photodiode node by a source follower transistor Mfb. The feedback network has a faster capacitive-divider
signal path (via C1 and C2), and a slower resistive path (via Madapt) with a time constant controlled by a
bias voltage Vb. (b) This two-transistor circuit generates the bias voltage Vb for the adaptive photoreceptor
circuit.

pixel routes output from the pixel to an external current sense amplifier circuit, and is controlled by
on-chip digital scanner circuitry. A combination of these switches may be activated simultaneously
to generate the net image-speed output from the non-directional models by current summing.

The details of the subcircuits used to implement different computational blocks is described
below.

6.1.1 Adaptive photoreceptor

An adaptive photoreceptor circuit (Delbrück and Mead, 1993) was used for phototransduction (see
Figure 6.2). This circuit converts the intensity pattern incident on its photodiode into an electrical
signal, and uses a feedback mechanism to operate reliably over five orders of magnitude of illumina-
tion change. In our implementation, two outputs from this circuit were utilized: a logarithmically
encoded contrast voltage signal Vprout, and its long-time mean response Vfb. This circuit has a
temporal bandpass frequency characteristic, and therefore implicitly performs the function of the
high-pass filter stage in the non-directional models. In a 0.18 µm process, the active layer (the
topmost doped layer in a silicon wafer that is used as the source and drain terminals of a MOSFET)
is very shallow and provides less volume for photon absorption than a process with larger feature
size. The well layer in this process, on the other hand, is deeper than the active layer and hence
provides more volume for photon absorption. Therefore, to maximize the photosensitivity of the
circuit, the photodiode was implemented as a well-type p-n junction. The fill factor (percentage of
pixel area devoted to phototransduction) was 13%-17% of the pixel layout based on the pixel type
as will be explained in Section 6.2. The photodiode was surrounded by a guard ring to prevent
minority carriers from diffusing towards other transistor elements in the pixel.
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Figure 6.3. A gm-C low-pass filter circuit. A p-type transconductance amplifier has its output node Vfilt

connected to its negative input and a capacitor C. The bias voltage Vtau controls the bias current Ib through
the circuit.

6.1.2 Low-pass filter

The first-order low-pass filter unit utilized in the NDS and NDM models was implemented as a
five-transistor transconductance amplifier based gm-C filter. A PMOS-type gm-C filter is shown in
Figure 6.3. A bias current Ib was used to control the time constant τ of this first-order filter circuit
as illustrated by the frequency domain analysis in the following equation:

Vfilt(s) = Vprout(s) · 1
1 + τ · s (6.1)

where
τ =

C

gm
=

C · UT

κ · (Ib/2)
(6.2)

In the above equation, UT is the thermal voltage, and κ is the back-gate coefficient. All transistors
were operated in the subthreshold regime of the MOSFET. The bias current of this circuit was used
to set the time constant of the filter, and this current may in turn be controlled by an external bias
voltage Vtau:

Ib = I0 exp(
κ · (Vdd − Vtau)

UT
) (6.3)

where Vdd is the power-supply voltage, and I0 is the current when Vtau = Vdd.
The NDM pixel used a PMOS-type circuit as described above, while the NDS pixel utilized an

NMOS-type circuit where all the NMOS transistors were replaced by the PMOS transistors and vice
versa. This ensured that the DC voltage level of the respective pixels were in the proper operating
range of the next circuit stage.

This low-pass filter stage may be turned off by setting the time constant of the filter to a small
value. This is done by increasing the gate-to-source voltage of the bias transistor such that Ib

increases. A large value of Ib makes the time constant τ small such that the cut-off frequency of the



83

Isum

Vfi l tRVfbVfbLVfi l tL

Isum

Vprout VfbR

Vdiff Vdiff Vdi ff

Figure 6.4. A current-mode differential voltage addition circuit. Vdiff is the bias voltage that provides the
current in the three branches of the circuit. Isum represents the sum of the three currents induced by the
difference of the low-pass filter and photoreceptor voltages and their respective mean values.

circuit becomes high. Thus the circuit allows both low and high frequencies to pass and the input
and output voltages are almost equal.

6.1.3 Current-mode differential voltage addition circuit

In NDS pixel, the output of the low-pass filters from adjacent pixels are summed with the central
photoreceptor output. This was achieved by utilizing a current-mode differential voltage addition
circuit as shown in Figure 6.4. At the first stage of this circuit, the voltage signals of the low-
pass filters from the two neighboring pixels VfiltL and VfiltR, and the photoreceptor output Vprout

from the same pixel were subtracted from their mean values (VfbL, VfbR, and Vfb, respectively)
obtained from the long-term mean response of the respective adaptive photoreceptor circuits. These
differences were converted into current signals and summed together by utilizing Kirchoff’s Current
Law (KCL). The output of this circuit is a bidirectional current Isum.

6.1.4 Absolute value circuit

The NDM pixel encodes stimulus speed in its mean output which can be easily computed off-chip.
The NDS pixel, on the other hand, encodes speed in the amplitude of its output which is easier to
compute on-chip. The amplitude of a signal is proportional to the mean of its absolute value. We
use this idea to extract the amplitude information from the NDS pixel output. The current output
of the addition circuit is fed into an absolute value circuit (see Figure 6.5). The absolute value circuit
provides a source or a sink for the current going in or out of the addition circuit. The current mirror
acts as a sink while the cascode transistor sources any current required by the addition circuit. The
final output is a bidirectional current Iout. Off-chip, we compute the mean of this signal which is
proportional to the amplitude of the response of the NDS pixel.
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Isum

Vcas

Iout

Figure 6.5. A current-mode absolute value circuit (Toumazou et al., 1990). A bias voltage Vcas controls a
cascode transistor that isolates the voltage fluctuation at the input node from the output. The output is a
bidirectional current Iout.

6.1.5 Differential add-multiply circuit

The addition and multiplication stages of the NDM model were implemented together in a novel
differential mode add-multiply circuit that we designed for this chip based on the Gilbert multi-
plication cell (Gilbert, 1974). The Gilbert cell was modified to perform both the addition and the
multiplication operations. A four-quadrant differential add-multiply circuit is shown in Figure 6.6.
The function implemented by this circuit is (A + B)× C. A differential input scheme was adopted
in order to maximize the dynamic range of operation. The difference between each input and its
mean was converted into a current. The inputs to this circuit came from the low-pass filter circuits
in the two adjacent NDM pixels, and the output of the adaptive photoreceptor circuit. The mean
response of the inputs were connected to the long-term mean output of the respective photoreceptor
circuits. The removal of the mean from the input makes the output of this circuit resistant to any
DC perturbation of its inputs. This effectively counters the process-variation induced differences
in the operating level of the transistors across the chip. We also incorporated an adjustable well
potential (Vw) for the lower four p-type transistors (M7-M10) to enable them to operate at the
same input voltage levels as the upper input transistors (M2, M3, M5, M6), as first reported by
Harrison (2005). The well terminals of all other p-type transistors were connected to the chip’s most
positive potential (Vdd). All the transistors in this circuit operate in the subthreshold regime of the
MOSFET. The circuit may be analyzed to get the following expression for the output current:

Iout = Ib · tanh
(

κ
Vc − Vcr

2UT

)
×

[
tanh

(
κ

Va − Var

2UT

)
+ tanh

(
κ

Vb − Vbr

2UT

)]
(6.4)

where Ib is the bias current, κ is the back-gate coefficient, UT is the thermal voltage, and Var, Vbr,
and Vcr are the mean values about which the inputs Va, Vb, and Vc vary. Since the hyperbolic
tangent function is linear for small values, we can approximate the above expression for small input
voltages as:

Iout ≈ Ib

(
κ2

4U2
T

)
· (Vc − Vcr)× [(Va − Var) + (Vb − Vbr)] (6.5)
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Figure 6.6. A differential add-multiply circuit. Inputs Va and Vb are added and then multiplied with
the input Vc. Var, Vbr, and Vcr are the mean values about which these inputs vary. The multiplier input
transistors M7, M8, M9, and M10 have their well terminals controlled by a bias Vw. All other PMOS well
terminals were connected to Vdd. A bias voltage Vam controls the currents Ib flowing through this circuit.
The output of the circuit is a bi-directional current Iout.
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Figure 6.7. A current sense amplifier circuit. Iin is the input current, Vref is the reference voltage, and
Vout is the output voltage. A feedback resistor Rf sets the gain of the amplifier.

As can be seen from the above equation, the circuit computes the desired function over a small
linear range of its inputs. The output saturates when the inputs exceed this linear range (experi-
mentally determined to be about 250 mV: see Section 6.3.1).

6.1.6 Scanner circuit

The peripheral digital scanner circuitry was designed on the chip to access the pixel core. Scanners
are addressable flip-flop circuits and act as an indexing scheme to route a signal to and from a
specific pixel (addressed by its x- and y-position) to a bonding pad on the chip (Mead and Delbrück,
1991). A single-transistor MOS switch was used in every pixel and could be digitally switched on to
route the output of that specific pixel to an output pad on the chip. In most operating conditions,
a combination of outputs from several pixels was computed by KCL sum of the current outputs to
estimate the net image speed of a stimulus.

6.1.7 Current sense amplifier

A current sense amplifier circuit was implemented external to the chip to convert the tiny current
output from the pixels into a measurable voltage signal. Figure 6.7 shows the current sense amplifier
configuration that we utilized on our circuit board. An operational amplifier was connected in
a negative feedback configuration with a feedback resistor Rf . The output pin of the chip was
connected to the negative input of the operational amplifier and provided the input current Iin. The
positive input of the amplifier was connected to a reference voltage Vref . For this circuit, the output
voltage may then be computed to be

Vout = Vref + Iin ·Rf (6.6)

From the above equation we can conclude that the current sense amplifier output voltage has an
offset equal to the reference voltage Vref , and a gain equal to the feedback resistor Rf .

6.2 Chip layout

The layout of the circuits was drawn using L-Edit (Tanner Research, Inc.). The chip was designed
to have an array of 140×140 interleaved NDS and NDM type pixels. Two different layouts were
fabricated for each pixel type with the same outer dimensions, but differing in fill factor. One pixel
type was designed with a high fill factor and smaller capacitors (pixel type 1), and the other was



87

Low Pass Filter

Add-Multiply

Circuit

Photoreceptor

NDS Pixel

Wiring

(a) NDM pixel type 1

Low Pass Filter

Add-Multiply

Circuit

Photoreceptor

NDS Pixel

Wiring

(b) NDM pixel type 2

Low Pass Filter

Photoreceptor

Addition &

Absolute Value

Circuits

NDM Pixel 

Wiring

(c) NDS pixel type 1

Low Pass Filter

Photoreceptor

Addition &

Absolute Value

Circuits

NDM Pixel 

Wiring

(d) NDS pixel type 2

Figure 6.8. Layout of the NDM and NDS pixels showing the different sub-circuits.

designed with bigger capacitors for better control over the circuit time constants but lower fill factor
(pixel type 2). Figure 6.8 shows the layout of the NDM and NDS pixels. 70×70 pixels of each
type were fabricated on a single die in a 0.18 µm CMOS process. The type 1 NDS and NDM
pixels had a fill factor of 17% and this led to their having a much smaller low-pass filter capacitor.
The type 2 pixel had a fill factor of 13% with a bigger low-pass filter capacitor as seen in Figure
6.8. The NDS and NDM pixels were juxtaposed as shown in Figure 6.9 to form a grid. The time
constant of the low-pass filter did not affect the output of the simplified model, and the outputs
were virtually identical for the two pixel types with the low-pass filter circuit turned off. The layout
of the whole chip with the peripheral scanner circuitry and the bonding pads is shown in Figure
6.10a. A photomicrograph of the fabricated integrated circuit is shown in Figure 6.10b.

6.3 Characterization

The fabricated sensor was tested using the setup shown in Figure 6.11. The chip was mounted on a
custom designed circuit board with bias and interface circuitry. Two data transfer ports, one analog
and the other digital, were placed on the board (see Figure 6.12). The digital port was used to
interface the circuit board with a computer that provided control signals for the peripheral scanner
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Figure 6.9. Layout of the juxtaposed NDS and NDM pixels showing the inter-pixel wiring in the center of
the chip. All the rows above these central rows comprised type 1 pixels, while all the rows below them were
type 2 pixels.
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Figure 6.10. The ND chip. (a) Layout. (b) Photomicrograph of the integrated circuit.

LCD Monitor

Circuit Board

Stimulus

Figure 6.11. Chip characterization setup. The circuit board was aligned so as to view the image on an
LCD monitor. The monitor display was controlled by a C program on a computer. The computer also
controlled inputs to the scanner circuitry on the chip, and recorded analog voltage outputs from the current
sense amplifier.
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Figure 6.12. Circuit board for testing the sensor showing the interface ports, bias circuits, and the lens-
mounted chip.

circuitry. The analog port was used to record the data from the chip. The output from the chip, a
current signal representing the sum of NDS or NDM pixels, was converted into a voltage signal by a
current sense amplifier with a gain of 8.7×105 V/A. The stimulus was generated using a computer
program and displayed on an LCD monitor. The chip was mounted with a lens to focus the image of
the stimulus on the sensor, and was held such that the die was aligned parallel to the monitor. The
chip was stationed at a distance of 16.4 cm from the monitor. The focal length of the lens mounted
on the chip was 13.3 mm.

The add-multiply circuit was characterized separately from the rest of the pixels in the circuit.
This was performed by providing direct voltage inputs to the different terminals of a test circuit
fabricated on the chip, and the current output was again processed into a voltage signal by the current
sense amplifier on the circuit board. The characterization results of this add-multiply circuit, and
the NDM and NDS pixels, are presented below.

6.3.1 Differential add-multiply circuit

In the case of the differential add-multiply circuit, the power supply for the test circuit was set at
2.2 V and three different inputs were provided using stable external power supplies. The differential
add-multiply circuit performs the following operation: (Vc − Vcr)× ((Va − Var) + (Vb − Vbr)), where
the notation is the same as in Section 6.1.5. From here on, we call these differential voltages Vcd,
Vad, and Vbd, respectively. We tested the linearity of the circuit for several cases. First, we tested
the linearity while the multiplier voltage Vcd was varied. To test this, we fixed the input voltages
Vad and Vbd at 42 mV and 32 mV respectively, and varied Vcd from -206 mV to 194 mV. As seen in
Figure 6.13a, the output voltage for Vcd between -106 mV and 94 mV is roughly linear. The variance
of the measured output is within 16% variance of a linear fit shown by the dark line in the figure.
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Figure 6.13. Response of the add-multiply circuit as Vcd (a) and Vad (b) are varied. The dark line shows
a linear fit to the data. The gray vertical line indicates when the input differential voltages Vcd and Vad are
zero in plots (a) and (b) respectively.

The linear range of Vcd is approximately 200 mV after which the output saturates as expected from
Equation 6.4.

In the next case, one of the multiplicand voltages Vad was varied. We fixed Vbd and Vcd at 35
mV and 24 mV respectively. Vad was varied over a range between -504 mV and 196 mV. The output
of the circuit was linear over a range of roughly 200 mV as seen by the linear trend line in Figure
6.13b. Outside this range, the output of the circuit saturates. The output is shifted towards the left
side of the zero value of Vad due to the positive value of Vbd which gets added to Vad.

We next varied both Vad and Vbd while keeping Vcd fixed at -76 mV. Vbd was varied from -285
mV to 315 mV, while Vad was chosen to be either -204 mV, -81 mV, 43 mV, or 121 mV. In this case,
as Vbd is varied and the value of Vad is increased, the output of the circuit should have different DC
offsets but the same slope. As shown in Figure 6.14, the output of the circuit increases linearly with
the sum of Vad and Vbd (individual traces in the figure). Since Vcd is negative here, the output of
the circuit decreases with an increase in Vbd. Similarly, as Vad decreases from 121 mV to -204 mV
in four steps (four traces in the figure), the DC offset of the output increases. The saturation of the
response with increasing Vad is seen by the overlapping of the two lower traces in the figure.

The characterization results of the entire circuit are shown in Figure 6.15. We fixed Vad at 43
mV, and then independently varied either Vbd or Vcd to obtain the plots shown in the figure. Note
that the output saturates as Vbd exceeds a certain voltage range (nearly 300 mV). Also, there is a
saturation with Vcd as can be seen by the banding of traces at the top and bottom of the figure
(similar to the overlapping traces in Figure 6.14). The linear range for Vc was nearly 400 mV. The
trend in the linear region matches closely with the theoretical response of the function (A+B)×C.
The positive voltage level of Vad makes the responses on the left half of the figure saturate at higher
(lower) values, based on the negative (positive) voltage level of Vcd. This happens because for
positive Vad, the sum of the inputs Vad and Vbd becomes less negative when Vbd is negative and more
positive when Vbd is positive. Since the linear range of the circuit is constant at about 300 mV, this
causes the linear range of the output to be smaller on the right half of the figure.

The saturation of the response beyond the linear range is a useful feature of this circuit. In
biological systems, we commonly observe a similar trend where the neuronal circuits saturate and
thereby impose an upper or lower limit on the system. Likewise, in robotic applications, it is often
desired for system stability reasons that the circuits impose a hard limit on the control signal. The
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Figure 6.14. Response of the add-multiply circuit versus the input voltage Vbd. The four traces represent
data at four different values of Vad (-204 mV, -81 mV, 43 mV, and 121 mV). The value of Vcd was -76 mV.
The zero level of Vbd is shown by the gray vertical line.

saturation of the output in this circuit provides exactly that.

6.3.2 NDM pixel characterization

In this section, we present the results from the simplified NDM pixels. As described in Section 6.1.6,
the scanner circuit can be provided with an input to select either the NDS or the NDM pixels. The
low-pass filter circuit was turned off to emulate the simplified non-directional models. We activated
eight spatially random NDM pixels in a single row, and recorded their response using a current
sense amplifier. A random selection of pixels ensures that the input phase of the visual stimulus
does not systematically affect the output of the pixels. The voltage output from the current sense
amplifier had an offset due to the summation of the pixel currents. Figure 6.16a shows the raw data
from the chip when presented with a sinusoidal grating of spatial frequency 0.13 cycles/pixel. The
speed of the stimulus was stepped from 8 to 26 pixels/second with each pixel being 23.175 µm wide.
The time trace in the figure suggests that the response of the sensor increases linearly with stimulus
speed.

We further characterized the NDM sensor by plotting its response against the speed of the
stimulus at various spatial frequencies. The speed of the stimulus (v = ωt/ωx) was varied from -30
to +30 pixels/second. The spatial frequency was varied from 0.14 cycles/pixel to 0.2225 cycles/pixel
in steps of 0.0275 cycles/pixel. Data from the chip was collected as a sum of eight randomly selected
pixels in a single row on the chip over five repetitions of the visual stimulus. The data from these
repetitions were processed to compute mean and standard deviation of the response at all speeds
for every spatial frequency. The average speed response from the NDM pixels are plotted in Figure
6.16b. The response of the chip at low speeds (between ±6 pixels/second) was found to be dependent
on the mean luminance of the screen and not the stimulus speed due to light-induced leakage. At
these speeds, the temporal frequency of the stimulus was very small and the grating drifted very
slowly on the screen. The solid line in the figure represents the linear response with speed. It can
be seen that the response of the NDM pixels is relatively independent of the spatial frequency.

We also plotted the average response of the NDM pixels while the spatial frequency and the
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Figure 6.15. Output characteristics of the differential add-multiply circuit. The current-mode output of
the circuit was converted into a voltage signal using a current sense amplifier with a gain of 8.7× 105 V/A.
Input Vad was fixed at 43 mV, while inputs Vbd and Vcd were varied. The output shows a linear region that
matches with the functional response ((A + B) × C), and a non-linear region where the output saturates
(see text for details).

speed of the stimulus were varied. Data were recorded from the same set of pixels as in the previous
experiment. The speed of the stimulus was varied from -30 to 30 pixels/second. The spatial frequency
was varied from 0.08 to 0.225 cycles/pixel. Figure 6.16c shows a contour plot of the mean response
versus the spatial frequency and speed of the stimulus. A dark shade represents a lower response
magnitude while a lighter shade indicates a higher magnitude. We have superimposed contour lines
(white traces in the figure) of the response on this graph. The plot shows similar trends as were seen
in the contour plots of the simplified NDM model in Chapter 5. However, at low speeds (less than
±6 pixels/second), the data shows that the response of the chip is higher for low spatial frequencies
(less than 0.14 cycles/pixel) as compared to the response at higher spatial frequencies (white island
like contour lines in the middle of the graph). At these spatial frequencies, as discussed in the case of
the speed curve in Figure 6.16b, the temporal frequency is very low (a speed of 10 pixels/second at
0.1 cycles/pixel requires a temporal frequency of 1 Hz). For slower speeds, the temporal frequency is
lower than 1 Hz. At such low temporal frequencies, the sensor is not able to detect a change in the
speed of the grating and rather responds to the mean luminance of the screen due to light-induced
leakage.

In Figure 6.16c, for lower spatial frequencies we can see the saturation of the response at moderate
(20 pixels/second) to high (30 pixels/second) speeds as seen by the curving of the contour lines
parallel to the speed axis. In the intermediate spatial frequency range (0.12 to 0.225 cycles/pixel),
the response magnitude does not change much with spatial frequency (parallel to the y-axis) but
changes almost linearly with speed. We could not probe the chip at spatial frequencies higher than
0.225 cycles/pixel due to resolution limitations of the LCD monitor.

The relative independence of the response to the spatial frequency of the stimulus may be further
seen in Figure 6.16d. It shows the average response and standard deviation of the NDM pixels at
speeds of 20 and 8 pixels/second (upper and lower trace, respectively). We see that at a speed of
8 pixels/second, the response is relatively flat against a range of spatial frequencies (from 0.12 to
0.225 cycles/pixel as indicated by the trend line). The standard deviation is also small in this range.
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Figure 6.16. Response of the NDM pixels to a sinusoidal stimulus. (a) A time trace of the response as
stimulus speed is stepped from 8 to 26 pixels/second as indicated by the brackets in the figure. (b) Response
of the NDM pixels (mean and standard deviation) as the speed of the stimulus is varied. Multiple sets of
data collected at spatial frequencies 0.14, 0.1675, 0.195, and 0.2225 cycles/pixel are overplotted to show that
the response is relatively independent of spatial frequency. The solid line represents a speed-dependent linear
response. (c) Contour plot of the average response as the spatial frequency and the speed of the stimulus
are varied. The magnitude increases from dark to light shade. The response magnitude increases with speed
and is almost independent of the spatial frequency for a range of spatial frequency as shown by the vertical
portion of the contour lines. (d) Average response and standard deviation versus spatial frequency. The
upper trace shows the response at a speed of 20 pixels/second, while the lower trace shows the data at a
speed of 8 pixels/second. The line segments show the trend of the data for each case.
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For the higher speed trace, we find that the response increases linearly with spatial frequency up to
a range (from 0.08 to 0.16 cycles/pixel) and after that the increase with spatial frequency is small
as indicated by the trend line in the figure. This shows that the response for higher speed is less
dependent on the spatial frequency only for a small range above 0.16 cycles/pixel. The linear change
at low spatial frequencies in this case points to the gradual saturation of the response (see Figure
6.16c). The standard deviation is large at very low spatial frequencies for both the traces. This
was again due to the inability of the sensor to respond in a speed-dependent manner to very low
temporal frequency inputs as discussed earlier.

6.3.3 NDS pixel characterization

For characterizing the simplified NDS pixels, the low-pass filter circuits were turned off while col-
lecting the data from the chip. The scanner circuitry was utilized to select eight spatially-random
NDS pixels in a single row. The output was a sum of the current outputs of the individual pixels
which was then converted into a voltage signal by a current sense amplifier. Figure 6.17a shows
the raw data from the chip when presented with a sinusoidal grating of spatial frequency 0.13 cy-
cles/pixel. The speed of the stimulus was stepped from 8 to 26 pixels/second. The plot suggests a
linear increase in the chip response with speed.

Figure 6.17b shows the mean and standard deviation of the response of the NDS pixels as the
speed of the stimulus was varied from -30 to 30 pixels/second. The spatial frequency was varied
from 0.14 cycles/pixel to 0.2225 cycles/pixel in steps of 0.0275 cycles/pixel. The data was collected
in the same manner as data for the NDM pixels. As shown in Figure 6.17b, the response increases
linearly with speed and is fairly independent of spatial frequency as seen by the solid line in the
figure. The response at low speeds, however, did not follow the trend line. The response at speeds
between ±6 pixels/second depended on the mean luminance of the screen as was also the case for
the NDM pixels due to light-induced leakage.

Figure 6.17c shows the response of the NDS sensor while the spatial frequency and the speed of the
sinusoidal stimulus were varied. The spatial frequency was varied from 0.08 to 0.225 cycles/pixel
and the speed was varied from -30 to 30 pixels/second. The image representation of the data is
similar to the NDS contour plot presented in Chapter 5. For a range of spatial frequencies (0.12 to
0.225 cycles/pixel), the response of the NDS pixels remains fairly constant at a given speed (as seen
by the white contour lines in Figure 6.17c). As explained for the NDM case, here too at very low
speeds, the sensor was unable to detect speed of the sinusoidal grating and responded to the mean
luminance of the screen. This is seen in the figure as concentric contour lines in the middle of the
plot.

The average and the standard deviation of the NDS pixel response is plotted against the spatial
frequency of the stimulus in Figure 6.17d. The lower trace represents the response of the NDS pixels
at a speed of 8 pixels/second. It can be seen that the average response of the NDS pixels is fairly
independent of the spatial frequency of the stimulus between 0.12 to 0.22 cycles/pixel. The upper
trace is the response of the NDS pixels at a speed of 20 pixels/second. It can be seen that the
response increases linearly with spatial frequency up to 0.16 cycles/pixel, and after that the increase
with spatial frequency is small as indicated by the trend line in the figure.

The response of the NDS and NDM pixels presented above are consistent with the simulation
results of the models presented in Chapter 5, although they are affected by light-induced leakage
at low speeds. The results show that for a range of spatial frequencies, both the sensors respond
linearly with speed.

6.4 Discussion

There were several limitations of this design which did not allow us to use this sensor on an au-
tonomous system. We discuss them in this section for both the NDS and NDM pixels.
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Figure 6.17. Response of NDS pixels to a sinusoidal stimulus. (a) A time trace of the response as stimulus
speed is stepped from 8 to 26 pixels/second as indicated by brackets in the figure. (b) Response (mean
and standard deviation) as the speed of the stimulus is varied. Multiple sets of data collected at spatial
frequencies 0.14, 0.1675, 0.195, and 0.2225 cycles/pixel are overplotted to show that the response is relatively
independent of spatial frequency. The solid line represents a speed-dependent linear output. (c) Contour
plot of the average response as the spatial frequency and speed of the stimulus are varied. The magnitude
increases from dark to light. The response magnitude increases with speed and is almost independent of the
spatial frequency for a range of spatial frequency as shown by the vertical portion of the contour lines. (d)
Average response and standard deviation against the spatial frequency. The upper trace shows the response
at a speed of 20 pixels/second, while the lower trace shows the data at a speed of 8 pixels/second. The line
segments show the trend of the data for each case.
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The response of the sensor at very low speeds (between ±6 pixels/second) depended on the mean
luminance of the screen. This was found to be true for both the NDM and the NDS pixels. This
was probably due to light-induced leakage in the pixels. The light incident on the chip can create
a small photocurrent in the transistors of a pixel. The response of the chip was recorded for only a
selected number of pixels; however, the leakage takes place across the chip. Therefore, even for small
leakage currents in individual pixels the net effect is appreciable. Another reason that may have
contributed to this sensitivity is the size of the transistors in the pixel. The chip was fabricated in
a 0.18 µm process and therefore the size of transistors was small. This makes the transistors more
susceptible to second order effects that cause the gate of a transistor to have less control over the
channel current. This may have further deteriorated the response of the chip at small signal levels
as is the case for small speeds.

The response of the NDS and NDM pixels were not much different from each other. From the
analysis presented in Chapter 5, we had expected that the response of the NDS pixel would be more
linear than the NDM pixel. This is also true for the chip and is seen via more equidistant contour
lines in the case of the NDS pixels (Figure 6.17c). The distance between the contour lines in the
case of the NDM pixels is smaller for speeds between ±4 and ±8 pixels/second, larger for speeds
from ±8 to ±14 pixels/second, and then small again for higher speeds (see top half of Figure 6.16c).
There was no appreciable difference in the spatial frequency tuning of the two pixels.

The fabricated chip also had a part of its scanner circuitry disabled due to a layout error. This
did not allow us to choose a single pixel individually, but only a group of pixels in a row. This
limited our testing capability of the sensor chip and we could not test the exact effect of biases on
the output current of the pixels.

The above-mentioned problems may be solved by fabricating an improved version of this sensor.
To tackle the problem of light induced leakage, the transistor sizes can be made larger so that
their sensitivity to the second order effects is diminished. This would also reduce the mismatch of
transistors across the chip. Also, the non-photoactive regions in the chip can be better shielded
against light-induced leakage by using multiple layers of metal. The layout error in the scanner
circuit may be easily corrected to give us greater control over the individual pixels on the chip. We
can also fabricate an on-chip bias-generation circuit (Delbrück and Van Schaik, 2005) that could
provide stable bias voltages to all the subcircuits in the sensor. This would greatly improve the
usability of the sensor on a mobile platform. With these improvements, the sensor would be able to
respond linearly to speed at lower speeds and spatial frequencies.

In the next section, we present an outline of how the non-directional speed output of this sensor
may be used for navigation by a robotic platform.

6.5 Non-directional speed based navigation

The non-directional speed signal obtained from the NDM or NDS pixels may be used to control
the path of a terrestrial robot. We consider the case of navigation in obstacle-ridden terrain by an
autonomous mobile platform. A diagram of such a mobile system is shown in Figure 6.18. Three
sensor chips are mounted with lenses for focusing the image of the scene onto the sensor die. The
chips are oriented to compute image speed on the left, center, and right side of the moving platform.
An onboard power supply PS is used to provide power to the chip and other electronics in the system.
An onboard electronic circuit board CB has a microcontroller that generates a control signal based
on the inputs from the sensor chips. This signal is sent to the servo motors that control the speed
and orientation of the mobile platform.

The image speed on the sensor chip is computed by summing the response from all the pixels on
a chip. Due to motion parallax, the local non-directional speeds estimated by the pixels would be
larger for closer objects and smaller for farther objects. A sum of all the pixels on the right side is
compared with the sum of all the pixels on the left side. For two carefully calibrated sensor chips,
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CB

PS

Figure 6.18. Diagram showing the arrangement of sensor chips on a mobile platform. Three sensor chips
are each equipped with a lens to focus an image onto the chips and are shown in the diagram oriented such
that they compute image speed on the left, center, and right side of the mobile platform. The motors moving
the mobile platform are controlled by a circuit board CB. The power supply to all the electronics is provided
by an onboard supply PS.

this difference will reveal which sensor computed a higher image speed value. The microcontroller
then uses the difference between the output of the two sensors to turn the platform away from the
side which witnessed a higher speed (Serres et al., 2006). For the case of static obstacles that are
not directly ahead, this would provide an elegant yet simple mechanism for autonomous navigation.

For an obstacle that is directly ahead of the robot, the central sensor chip is utilized. This
chip computes the net image speed of the central portion of the scene and sends this information
to the microcontroller. The microcontroller compares the response of the central chip with the
response of the left and right sensors. If the response of the central chip is smaller than either of
the other two sensors, it does not affect the navigation strategy of the robot. However, any time the
speed response of the central chip exceeds the response of both the left and right sensor chips, the
microcontroller is programmed to regard it as a frontal obstacle. Upon discovering this, the mobile
platform immediately slows down and makes a turn at a predefined angle, preferably 90◦, to avoid
collision. This strategy will ensure that the robot does not collide head-on with an obstacle. For
obstacles on the left and right side, the robot would navigate smoothly around them.

Such a robot may be very useful in terrain where population density is very low and most of the
obstacles are static, for example for a search mission on a desolate island, or more interestingly on
an exploration mission on Mars.

6.6 Summary

We have designed and fabricated an analog VLSI chip based on the NDM and the NDS models.
To achieve this, we designed and tested a novel add-multiply circuit, characterization data from
which was presented. The speed-dependent output from the chip was recorded and analyzed. The
results from the fabricated chip follow the response characteristics of the two non-directional models.
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This suggests that the non-directional chip may be used to compute image speed. The surrounding
scanner circuitry allows for a summation of the pixel responses. This spatial averaging cancels out
individual fluctuations in a single pixel’s output due to process-induced variations. Thus, similar
to an insect visual system, this sensor produces a robust estimate of the image speed independent
of local variations. This neuromorphic architecture can be employed as a sensor on an autonomous
robot as was discussed in the previous section. We described how the signals from three chips
mounted on the robot may be used to navigate it in an obstacle-ridden environment.

In the final chapter of this dissertation, we present a brief discussion about the performance chal-
lenges of the tracking-based and non-directional models described in this dissertation, and present
directions for future work.
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Chapter 7

Final comments and future work

In this dissertation, we have presented neurobiologically-inspired models that may be used in the
design of autonomously navigating platforms. We have presented a collision avoidance system that
utilizes tracking to improve the performance of existing biological models. Earlier work on this topic
was based on mathematical analysis of optical flow based algorithms to generate tracking parameters
for a monocular agent (Fermuller and Aloimonos, 1992, 1993). We have experimentally shown by
implementing a camera-based system under which conditions the performance of a biological collision
avoidance model is most affected, and how we may utilize tracking to improve the performance,
specifically for the Rind and the STI models. We have also implemented a novel analog VLSI sensor
that can measure the image speed in a scene independent of a range of spatial frequencies. This
speed information may further be used for controlling the orientation and speed of an autonomous
robot.

In this chapter, we present our final remarks on the design issues related to the discussed
biomimetic models and propose improvements to the work presented in this dissertation.

7.1 Summary of contributions

We have mathematically analyzed two representative collision avoidance models, the Rind model and
the STI model, and have pinpointed reasons behind their failure in different collision scenarios. We
have proposed solutions for the limitations in the models and have implemented a collision avoidance
system based on these algorithms. Our solution relies upon extracting the 3D motion information
about the obstacle by tracking its trajectory in the two-dimensional visual field. This approach
is consistent with those utilized in the computer vision community. However, the novelty of our
approach is that the collision avoidance algorithms we implemented are derived from spatio-temporal
frequency based biological models. These models are robust to noisy visual inputs (Adelson and
Bergen, 1985) as compared to optical flow based algorithms used in the computer vision community
which can be mathematically unstable. Hence, spatio-temporal frequency based schemes are more
reliable under real world conditions. By combining the biological models with tracking, we have
shown that our implementation of the Rind and STI models with tracking perform consistently
better and are a major improvement over the Rind and STI models without tracking.

We have also simplified two non-directional speed estimation units derived from the neuronally
based EMD model such that they respond to a wider range of speed and spatial frequency of the
visual stimulus than the original models. We have implemented these modified NDS and NDM
models as an analog VLSI chip. The characterization results from the two pixel types show that
their outputs are relatively independent of the spatial frequency of the visual stimulus while being
linearly dependent on the stimulus speed. This speed dependent response may be used for simple
navigational schemes as have been described to model the landing and centering response of the
honeybees (Srinivasan et al., 1993, 2000).

In the next few sections, we discuss some of the shortcomings of the models described in this
dissertation. We also propose improvements to these models that may address these shortcomings
as a possible future work of this dissertation.

7.1.1 Collision avoidance models with tracking

The collision avoidance models with tracking capability that we have presented in this dissertation
show marked improvement over the Rind and STI models without tracking. However, we tested
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this system only for controlled collision scenarios. For those cases, our simple tracking algorithm
was able to reliably track the approaching object. Specifically, we have adopted a simple tracking
algorithm that computes the position of the obstacle based on the color of the object present in
the visual field. This scheme may be generalized to implement the same algorithm to compute the
position based on the brightness pattern in the visual field. However, in all these cases the inherent
assumption is that either the color or the brightness of the obstacle stands out from its environment.
This may not always be true. In such cases, a more involved tracking algorithm may be required.
We have experimented with one such algorithm based on a small-field tracking system in the fly
brain (Reichardt et al., 1989; Higgins and Pant, 2004b). This algorithm tracks a single object in
the visual field based on the relative motion of the object and the background. This algorithm was
not implemented in our system due to the extra computational time required to process it. When
implemented, this made our system operate at a very low frame rate and therefore, respond only to
small speeds. A possible future improvement of this model would be to investigate how to effectively
implement a better tracking algorithm without severely slowing our system.

We present some ideas to improve the existing tracking algorithm to make the collision detection
system cope with more complicated scenarios. One solution would be to use a sensor chip in parallel
with our system that implements the small-field tracking algorithm. We have earlier designed an
analog VLSI chip that can track small moving targets (Higgins and Pant, 2004a). This chip may
be used in parallel with the collision avoidance algorithm to divide the computational load of the
system. We can also implement the Rind and STI models as analog sensor chips and thereby reduce
the power consumption due to carrying a laptop on our mobile platform.

Another desirable improvement on this system would be to implement a tracking algorithm
that can predict the position of the target based on its past positions. In a control loop, the loop
delay severely hampers the performance of such a system. Our implementation is no exception.
Using a sophisticated Kalman filter based predictive algorithm (Kalman, 1960), this loop delay
may be reduced significantly. We must note, however, that this algorithm would require additional
computational machinery. The best result would be produced if this algorithm is incorporated within
a VLSI chip. An effort can be made to combine the small-field tracking model mentioned above
with a predictive algorithm. Such an algorithm would use the small-field tracking model to compute
the target location and feed it to a Kalman filter that would generate a control signal. This would
greatly improve the existing system and make it more usable for complex real world scenarios.

7.1.2 Non-directional speed-estimation model

The non-directional models described in this dissertation present a simple scheme to reliably es-
timate the speed of a visual stimulus. However, their responses are contrast dependent. For the
simplified NDS model, the output is linearly dependent on the contrast of the object. The output of
the simplified NDM model is dependent on contrast squared. This strong dependence on the con-
trast of the visual stimulus will incorrectly indicate an increase in the speed when only the contrast
of the stimulus increases. This limitation may be addressed by incorporating a contrast saturating
nonlinearity at the level of the phototransduction circuit. This nonlinearity will saturate the input
to the subsequent processing stages when the contrast of the visual stimulus increases or decreases
from a predefined range. A contrast saturation model like a hyperbolic tangent function may be in-
corporated in the analog chip. This unit may be inserted between the adaptive photoreceptor circuit
and the summation/multiplication circuits in the simplified NDS/NDM pixels. A circuit analog of
the saturating non-linearity is a transconductance amplifier with unity gain. The differential mode
range of this amplifier may be chosen such that it suppresses variations due to the contrast of the
visual stimulus except for a very small range where the response is linear with contrast.

Another severe limitation was encountered in the VLSI implementation of the two non-directional
models. The VLSI chip was fabricated in a 0.18 µm CMOS process. For this technology, the
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Figure 7.1. Short-channel effect on MOS transistors. a) Gate-to-source voltage (VGS) versus the drain
current (ID) plot for an NMOS transistor of size 0.63 µm × 0.63 µm. b) Source-to-gate voltage (VSG) versus
the drain current (ID) plot for a PMOS transistor of size 0.81 µm × 0.81 µm.
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minimum separation between the source and the drain of a MOS transistor on the chip, known as
the channel length, is set at 0.18 µm. At such a small channel length, the second order effects of
the device become very pronounced, especially the effect of minimum current flowing through the
transistor or the leakage current. In our design, some of the transistors were only three to four times
the minimum length. While measuring the characteristics of an NMOS and a PMOS transistor
on our chip, we found that at such small channel lengths, the minimum current flowing through
the transistor was determined by the leakage current, and not by the gate-to-source voltage which
otherwise regulates this current. This is due to the short-channel effects (Taur and Ning, 1998).

Figure 7.1 illustrates this problem in a small NMOS test transistor and a slightly longer PMOS
test transistor. These test transistors were fabricated on the same die as our sensor chip. The
channel length of the NMOS device was only 0.63 µm. We find that the drain current (ID) of the
NMOS transistor is approximately constant at 1.5×10−7 A, for a change of three hundred millivolts
of gate-to-source voltage, VGS (see Figure 7.1a). This problem is almost negligible in the case of a
slightly longer PMOS device with a channel length of 0.81 µm. As seen in Figure 7.1b, the drain
current varies over four orders of magnitude with the source-to-gate voltage (VSG). No reliable data
could be collected for VSG less than a hundred millivolts because of the limitation of our measuring
apparatus which was not sensitive below 10−10 A. This indicates that at this length, the PMOS
transistor was free of the short-channel effect.

Based on the two characterization curves for NMOS and PMOS transistors shown in Figure 7.1,
we can be reasonably confident that we will not witness the short-channel effect if we design all the
transistors in our chip to be longer than 0.81 µm. All the device ratios may be scaled up after this
adjustment to the size of the shortest transistors. This would make the chip functional over a larger
range of variations to the input illumination.

The VLSI sensor that we designed had two type of pixels each with a low-pass filter circuit that
was not utilized. The chip also had an interleaved array of NDM and NDS pixels that could not be
used simultaneously. As future work, this chip may be designed for only one type of pixel and with
no low-pass filter circuit. The removal of the low-pass filter circuit will provide us with extra space
in each pixel that may be utilized to make bigger photodiodes. The bigger a photodiode the less
sensitive it is to the nonlinear effect of currents on its edges. Thus a bigger photodiode will provide
a more reliable transduced signal to the processing circuitry in a pixel. After re-designing the chip,
it may be utilized to compute relative depth map by motion parallax. This chip may then be tested
in the real world by using it as a sensor in a closed-loop system for navigation.

7.2 Conclusions

Biomimetic models provide engineers with alternative approaches to otherwise complex and seem-
ingly intractable problems. In this dissertation, we have engineered a VLSI sensor chip for visual
speed estimation and designed a collision avoidance system that actively tracks the obstacles in its
visual field. As future work to this thesis, the speed estimation sensor chip may be elaborated to
implement the STI or the Rind model. This sensor chip may also be integrated with a tracking chip
to simultaneously track and avoid obstacles. The results from our experiments with the collision
avoidance system may also be used to design behavioral experiments for insects. These behavioral
experiments may be used to study the role of tracking during an avoidance maneuver in insects. An
autonomous system can be made ‘smarter’ by utilizing biological strategies like learning from the
past successes and failures. Other biologically inspired strategies like combining information from
several sensors (e.g. audio, visual, sonar) may also be incorporated in future designs. In conclusion,
a deeper and more comprehensive understanding of the biological systems is needed to propel the
design ideas for future intelligent systems.
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