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Abstract

Flying insects possess remarkable navigation abilities, and may be used as an inspiration for the
design of fast, low-power, robust autonomous robots. Essential to visual insect navigation is complex
motion detection circuitry. A neuronally-based model for elementary motion detectors (EMDs)
in the fly has been previously proposed, but there are a number of computational features that
are not supported by this model. We propose an expanded version of the model incorporating
saturation and motion adaptation, and show simulation results that match recordings of the electrical
activity of fly motion-sensitive interneurons. Our expanded model is used to explain data which
suggests adaptation of the EMD filter parameters and the results of genetic experiments in which
cells proposed to be involved in motion detection were successfully blocked in flies. In addition, we
have identified a possible mechanism through which insects could extract speed information from
the projected retinal image.
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Chapter 1

Fly Motion Detection

1.1 Introduction

Flies have been around for over three hundred million years (for a review see Borst and Haag, 2002).
With over 125,000 different fly species on the planet (Yeates and Wiegmann, 1999), they appear
to be one of the most evolutionarily successful animals on Earth. From an engineering perspective,
the fly’s capabilities are remarkable. A fly with less than 10 µW of power and 100 mg of weight
can achieve turning velocities of more than 3000 deg/sec and react with delay times less than 30
ms (Land and Collett, 1974; Wagner, 1986). Understanding the principles governing the neural
processes in the fly could aid in the design of fast, low-power, robust autonomous robots.

Underlying the remarkable navigational capabilities of the fly is superb motion detection circuitry
in its visual system. Motion detection is crucial for a number of important behaviors in flying
insects, including visual tracking (Collett and Land, 1978; Egelhaaf et al., 1988; Land, 1992; Lehrer
and Srinivasan, 1992), gaze control (Hengstenberg, 1993), prey pursuit (Olberg et al., 2000), and
visual course control (for a review see Borst and Dickinson, 2003). Furthermore, it is also involved
in range estimation for object avoidance (Kirchner and Srinivasan, 1989; Srinivasan et al., 1991),
and approach or landing (Braitenburg and Taddei, 1966; Wagner, 1982). The process of computing
motion from the visual input may thus be key to the understanding of more complex insect behavior.

The main focus of this thesis is the study of motion detection in the fly. While there are different
ways to approach this problem, we are interested in the development of neuronally-based models
that reflect the types of computations that may be taking place in specific cells in the fly’s visual
system. A neuronally-based model that incorporates anatomical and electrophysiological data can
be used to generate hypotheses about the properties of the specific neurons that it incorporates,
which can then be used to guide future experiments and advance our understanding of this system.

A neuronally-based model of motion detection recently proposed by Higgins et al. (2004) and
explained in Section 2.1 will be used as the substrate for the computational features that this thesis
explores. While there are a number of aspects of motion detection that are not yet well understood,
we chose to focus on the ones that have a value from an engineering perspective. Chapter 3 deals
with contrast and pattern size saturation, Chapters 4 and 5 are devoted to the study of adaptation,
Chapter 6 provides a study of redundancy and robustness in the network, and Chapter 7 explores
a possible mechanism for a velocity detector. Final comments and future work are summarized in
Chapter 8.

With the high volume of neuroscience content in this work, the reader will find that this is not
a typical Electrical Engineering thesis. The reader may also agree that the current engineering or
computer science approaches to traditionally difficult problems, such as computer vision or artificial
intelligence, have been rather unsuccessful by many standards. Perhaps the only way we will achieve
success is by taking advantage of the knowledge embedded in biological systems which have already
solved these problems hundreds of millions of years of ago.

1.2 Motion Detection and the Fly’s Visual System

Whenever a fly moves, the projection of the visual world on its retinae moves as well. The moving
pattern, also called optic flow, is processed by the visual system and used by the fly to navigate in
its environment. Motion originating from self-displacements and from moving objects in the fly’s
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(a) (b)

Figure 1.1. The eyes of a fly. (a) Front view of a female fly (Calliphora vicina). (b) Scanning
Electron Microscope (SEM) image of the compound eye of a fly (Drosophila Melanogaster) showing
the numerous facets. Panels a and b reproduced without permission from Gabriel (2004) and Fetchko
(2002), respectively.

visual field is not an inherent property of the retinal image and must be computed by processing
local changes in light intensity (for a review see Feng, 2003).

The eyes of a fly are composed of many individual facets called ommatidia (see Figure 1.1).
Each eye has thousands of ommatidia, each of them accommodating eight photoreceptors referred
to as R1 through R8 (Beersma et al., 1977). The lens in each ommatidium focuses light onto the
photoreceptors, which detect light through a chemical phototransduction process and send axons to
a part of the fly’s brain called the visual ganglia. The visual ganglia, shown in Figure 1.2, consist of
four layers: the lamina, the medulla, the lobula and the lobula plate. Each of these layers is organized
into repeated groups of cells which process information from the same visual unit. Each of these
visual processing units is referred to as a column or optic cartridge and the cells comprising each
column are referred to as columnar elements. In addition, adjacent columns in a layer correspond
to adjacent points in the visual image. This type of organization is referred to as a retinotopic
organization.

Photoreceptors R1-R6 are sensitive to UV or blue-green light, and are believed to be the input to
elementary motion detectors (EMDs) which compute motion by comparing changes in light intensity
from adjacent visual units. Because each of these EMDs processes information from only a small
region of the fly’s visual field, they are said to be small-field sensitive. EMDs are believed to be the
input to visual interneurons in the fly’s lobula plate, called lobula plate tangential cells (LPTCs).
The receptive field of each LPTC covers a large area of the visual field, and are therefore said
to be wide-field sensitive. There are about 60 different and uniquely identifiably LPTCs in each
hemisphere (Hausen, 1982; Hengstenberg, 1983; Eckert and Dvorak, 1983). The large size of these
cells facilitates electrophysiological recordings and numerous experiments with LPTC recordings
have been documented. As a result, a lot of what is known about motion detection is based on
LPTC experiments.

LPTCs are sensitive to motion in a directionally-selective and orientation-selective manner (for
a review see Borst and Haag, 2002). Horizontal-system cells (called HS cells), two centrifugal cells
(called CH cells) and cells H1 through H4 respond to horizontally-oriented motion. Three cells are
included in the horizontal system and are named according to the region of the lobula plate where
they extend their dendrites: HSN (northern region), HSE (equatorial region), and HSS (southern
region). Similarly, there are two centrifugal cells per hemisphere, the dorsal dCH cell and the ventral
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Figure 1.2. Schematic cross-section through the fly’s head, showing the location of the retina and
the layers of the visual ganglia: the lamina, medulla, lobula and lobula plate. Reproduced without
permission from Borst and Haag (2002).

Figure 1.3. Intracellular recordings from an HSE tangential cell responding to motion stimuli in
the cell’s preferred and null directions. Reproduced without permission from Borst and Haag (2002).
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Figure 1.4. Lobula plate tangential cells. CH cells and HS cells are horizontally-sensitive. V1
cells are sensitive to motion oriented vertically. The response from CH cells is purely graded, the
response of V1 cells is purely spiking, and the response of HS cells is a mixture of both. Reproduced
without permission from Borst and Haag (2002).

vCH cell. Vertical-system cells (VS cells) and V1 cells respond to vertically-oriented motion. The
vertical system includes the cells VS1 through VS11, which are numbered sequentially according to
the region of the lobula plate where their dendrites are located. In addition, LPTCs are sensitive to
the direction of moving visual stimuli and are excited (or depolarized) by motion in certain directions
and inhibited (or hyperpolarized) by other directions of motion. The direction of motion that elicits
the highest level of excitation in an LPTC is referred to the cell’s preferred direction (PD), while
the direction of motion that elicits the highest level of inhibition is referred to as the cell’s null
direction (ND), as illustrated in Figure 1.3. The anti-preferred direction is the direction of motion
that points 180o from the cell’s preferred direction, and is not necessarily equal to the cell’s null
direction. Moreover, while some LPTCs respond with trains of action potentials (H1 through H4
and V1 cells), some respond with only graded shifts of membrane potentials (CH cells), and some
with a mixture of both (HS and VS cells), as shown in Figure 1.4. LPTCs are important for flight
control and are thought to be involved in the optomotor response (Hausen, 1984), a compensatory
turn that the fly makes in response to large field rotations of the visual world due to unintended
trajectory deviations.

1.3 Characterizing Motion Detection

Because sinusoidal and square-wave gratings provide a convenient way to characterize the temporal
and spatial characteristics of the fly visual system, they have become the visual stimuli of choice in
the study of motion detection. Traditionally, motion detection in the fly has been studied either by
measuring the strength of the optomotor behavioral response or by recording the electrical activity
of LPTCs as flies are shown moving patterns. Two examples of these experimental paradigms are
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(a) (b)

Figure 1.5. Experimental setups used to study fly motion-detection. (a) In some experiments
immobilized flies were shown a moving square-wave pattern while recording from LPTCs (Dvorak
et al., 1979; Egelhaaf and Borst, 1989). (b) Experimental setup used to measure the optomotor
response in walking, by computing the rotations of a floating styrofoam ball on which the flies
walk as a wide-field grating moves around them (Keller, 2002). Both panels reproduced without
permission from Keller (2002).

shown in Figure 1.5.
The study of the optomotor response led to the development of the Hassenstein-Reichardt (HR)

model of motion detection (Hassenstein and Reichardt, 1956). This model has been shown to predict
both the optomotor response characteristics and the responses of LPTCs (Egelhaaf et al., 1988). The
canonical version of this model is shown in Figure 1.6a. The computation of motion is based on
the multiplication of a local photoreceptor signal with the delayed (low-pass filtered) signal from a
neighboring photoreceptor. Figures 1.6b and 1.6c show other versions of the HR model with high-
pass filters in all input pathways (Harris and O’Carroll, 2002) and with high-pass filters in two of
the pathways (Borst et al., 2003), respectively. The high-pass filters in the input paths prevent DC
inputs from propagating forward, so only changes in light-intensity are transmitted.

It is widely believed that LPTCs combine the output of arrays of EMDs (Franceschini et al., 1989;
Egelhaaf et al., 1989; Krapp et al., 1998). The response of each EMD appears to also follow the type
of response predicted by the HR model (Franceschini et al., 1989). Figure 1.7 illustrates the view
of LPTCs as spatial integrators of local HR models, representing individual EMDs. A limitation
of the HR model is that it does not provide any insight into how this type of computation may
be neuronally implemented. This becomes especially important when trying to characterize more
complicated systems, such as the prey-pursuit system, which receives input from cells believed to
be in the motion-detection pathway (Gronenberg and Strausfeld, 1991). Since the inputs to LPTCs
are columnar elements, it follows that the cells implementing each EMD would be located in the
columns of the layers of the visual ganglia. The possible identity of these cells is the subject of the
next chapter.
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Chapter 2

Neuronally-Based Models of Motion Detection

While the Hassenstein-Reichardt model of motion detection has been widely used since the 1950’s,
it does not provide any insight into the neuronal implementation of this computation. Unlike the
HR model, a neuronally-based model may serve as a substrate for the understanding of the neural
basis of motion detection and can be used to derive testable hypotheses about the network of cells
and synapses that it represents.

2.1 The Neuronally-Based EMD Model

Using comparative studies among different fly species, a subset of the more than 40 columnar
elements have been found to be ubiquitously conserved and have been proposed to be involved
in motion detection (Buschbeck and Strausfeld, 1996). Recently, a model of elementary motion
detection incorporating these neurons was shown to be as successful as the Hassenstein-Reichardt
model in predicting the responses of tangential cells to a variety of visual stimuli (Higgins et al.,
2004). The mathematical relationships between the network of cells in the model are based on
anatomical, electrophysiological, and histological studies.

The neuronal circuit, shown in Figure 2.1, includes lamina amacrine cells, lamina monopolar
cells, the basket T-cell T1, the transmedullary cells Tm1 and Tm9, the T5 bushy T-cell, and an
inhibitory interneuron. The foundations of the model are detailed elsewhere (Higgins et al., 2004).
Briefly, amacrine cells receive photoreceptor input and have been shown to synapse onto the T1
basket T-cell (Campos-Ortega and Strausfeld, 1973). Because T1 shows an inverted response to
that of the photoreceptors and has a small DC component (Douglass and Strausfeld, 2004), the
signal from the amacrine cell in the model is sign-inverted and filtered with a relaxed high-pass filter
containing a small low-pass component (to allow for a small DC signal to be transmitted to T1).
The lamina monopolar cell L2, also receiving photoreceptor input, is modeled with a sign-inverted
high-pass filter, as no sustained component has been detected in the L2 cell response (Coombe
et al., 1989). Both L2 and T1 are presynaptic to Tm1 (Campos-Ortega and Strausfeld, 1973),
but while L2 receives input from the photoreceptor in the same optic cartridge, T1 carries signals
from amacrine cell processes expanding to neighboring units. One dimensional and two dimensional
versions of the model have been proposed, differing only in the way that T1 is computed. In
the one dimensional model, T1 is computed by adding low-pass filtered amacrine signals from two
neighboring photoreceptors, as shown in Fig. 2.1. In the two-dimensional model, low-pass filtered
amacrine signals from a hexagonal array of neighboring photoreceptors are added at T1. The
response of the transmedullary cell Tm1 is computed by adding T1 and the local signal from L2.
Tm1 responds to motion in any orientation and because it receives both a local input and the
delayed (low-pass filtered) signals from neighboring visual units, it is a candidate for encoding non-
directional motion in its amplitude. This would imply that the cell is more sensitive to motion
than to flicker, but unlike a directionally-selective cell, it is unable to distinguish between motion in
different directions.

While histological studies suggest a role for Tm1 as an excitatory input to the T5 cell, a second
transmedullary cell, Tm9, is likely an inhibitory synaptic input (Snakevitch and Strausfeld, 2004).
In addition, the processes of Tm1 coincide with Tm9. Both Tm1 and Tm9 terminate at the level
of T5, but the Tm9 unit is displaced one visual sampling unit. The interaction of these three
cells is modeled as a Barlow-Levick motion detector (Barlow and Levick, 1965), which computes
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Figure 2.1. The one-dimensional neuronally-based model of elementary motion detection incorpo-
rating amacrine cells (Am), lamina monopolar cells (L2), basket T-cells (T1), two types of trans-
medullary cells (Tm1 and Tm9), T5 bushy T-cells (T5-R and T5-L) and an inhibitory interneuron
(IIN). Excitatory and inhibitory inputs are represented by arrows with positive and negative signs,
respectively. RHPF (relaxed high-pass filter) represents a HPF with a small low-pass component. A
filter preceded by a negative sign indicates that the output of the filter was sign-inverted. Inhibitory
inputs from the Tm9 cell are implemented as shunting. The inputs from T5 are rectified (POS)
and subtracted by the tangential cell model. Note that the diagram does not necessarily represent
individual cells, but rather the mathematical relationships between the various cell responses.
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motion through the interaction of an excitatory input (Tm1) with a delayed inhibitory input from
a neighboring unit (Tm9). The inhibition from Tm9 is shunting (a nonlinear inhibition, see Section
2.3), producing the nonlinearity required for directional selectivity. Full directional selectivity at the
level of T5 is achieved through an inhibitory interneuron. In order to reproduce data from Borst et
al. (1997), the T5 inputs to the tangential cell are rectified and subtracted (see Melano and Higgins
(2005) for details).

2.2 An Expanded Model

While the neuronally-based model described in the previous section is able to predict the rough
response of LPTCs in a variety of experiments, there are a number of features of the tangential cell
response that are not captured by the neuronally-based model or by the Hassenstein-Reichardt model
previously introduced. Our work for this thesis consisted of the incorporation of these features in an
expanded neuronally-based model, which is shown in Figure 2.2. Just as with the original neuronally-
based model, one dimensional and two dimensional versions of the model are possible depending on
how T1 is computed (see Section 2.1). The features incorporated include contrast saturation and
gain control (Chapter 3) and adaptation (Chapters 4). Moreover, the expanded model is used in
this thesis to explain and provide insight into the results of a number of experiments, including
impulse response data previously explained in terms of EMD filter adaptation (Chapter 5) and the
results of genetic experiments in which specific cells from the proposed motion detection pathway
were successfully blocked in flies (Chapter 6). In addition, the expanded model is used to explore a
possible mechanism for speed estimation (Chapter 7).

2.3 Modeling and Simulation Methods

All simulations were run using the Matlab software (The Mathworks, Natick, MA). The two-
dimensional simulations incorporated a 100 × 10 pixel image viewed by a 50 × 5 hexagonal array
of photoreceptors and an equal number of EMD models. Unless otherwise specified, the simulations
were as follows. The two-dimensional model was used with filters implemented as first order with
time constants of 250 ms for the high pass filters, 150 ms for the first low-pass and 50 ms for the
final low-pass filters. The time-step used for all simulations was 10 ms. Shunting inhibition was
modeled as a “dirty multiplication” (Koch, 1999):

F (Ie, Is) = pos(Ie) · (1− pos(Is)
Ismax

) (2.1)

where the function pos() indicates that negative quantities are set to zero, Ie and Is represent exci-
tatory and shunting inputs respectively, and Ismax is the maximum possible value of Is.

A two-dimensional sinusoidal grating moving in the horizontal direction was used as visual stim-
ulus

I(x, y, t) =
1
2
· (1 + C · sin(ωt · t + ωx · x + ωy · y + φ)) (2.2)

where t represents time, x and y are the spatial dimensions, C is contrast, ωt is the temporal
frequency, ωx and ωy are the spatial frequencies and φ is the phase. The inputs to the simulated
tangential cell were rectified T5 outputs as described in Melano and Higgins (2005).



18

Tm1 Tm1

-RHPF

Photoreceptor inputs

-RHPF -RHPF

LPF

-RHPF

LPF

+

+ +

+

+

LPF LPF

+

-
Direction-selective
     T5 outputs

LPF LPF

T5-R T5-L
-IIN

+
+- -Shunt Shunt

AmAm Am Am

L2 L2

+

T1 T1

Tm9Tm9

++
Σ Σ

Σ Σ

Σ ΣΣ

-HPF -HPF

+
--Shunt

S SS S

POS POS

+ -
G.C.

g ge i

Chapters 4 and 5

Chapter 3

Chapter 3

Chapter 6

A A

LPTC

Figure 2.2. The one-dimensional version of the expanded neuronally-based model of elementary
motion detection. The changes made to the model are explained in subsequent chapters. Chapter
3 describes the integration of a saturating nonlinearity (‘S’ blocks) into the T5 inputs and the
incorporation of pattern size saturation, also called gain control (G.C.), into the computation of
the simulated LPTC response. Chapters 4 and 5 discuss adaptation, which is proposed to occur in
the Tm1 synapses (‘A’ blocks). The relative contributions of T1 and L2 to the model response are
discussed in Chapter 6.
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Chapter 3

Contrast and Pattern Size Saturation

The response of a tangential cell increases with increasing stimulus contrast before reaching a con-
stant level. This saturating response may be important for providing the cell with an estimate of
the stimulus temporal frequency irrespective of its contrast (Egelhaaf and Borst, 1989). A similar
type of response is produced when the size of the stimulus is increased. Saturation with pattern size
makes the response of the cell insensitive to sparseness or gaps in the moving visual field or optic
flow (Borst et al., 1995). In this chapter, we show how both types of saturation may be incorpo-
rated in the expanded neuronally-based model. The model results in contrast sensitivity functions
that compare favorably with tangential cell recordings. The results provide additional evidence in
support of the model while allowing new insights into the nature of contrast saturation.

3.1 Background and Previous work

The responses of both the neuronally-based EMD model and the HR model (Hassenstein and Re-
ichardt, 1956) as presented in Figure 2.1 and Figure 1.6, respectively, increase as the square of the
contrast of the visual input. In biology, such an increase could only be sustained at very low visual
contrasts, beyond which tangential cells have been shown to saturate (see Fig. 3.1a). Egelhaaf et al.
(1989) successfully modeled this behavior by inserting a saturating nonlinearity into the canonical
HR model shown in Fig. 1.6a. Unfortunately, the modified HR model provides little insight into
where in the motion detection pathway of the insect this saturation could arise.

A second type of saturation in a tangential cell response occurs as the size of the visual stimulus
is increased. This saturation makes the response of the cell insensitive to gaps or sparseness in the
optic flow at sufficiently large sizes of pattern stimulus. Furthermore, the saturation level reached by
the cell depends on the stimulus parameters, specifically on the speed of the stimulus (see Fig. 3.1b).
The mechanisms through which the cell achieves this gain control are well understood (Borst et al.,
1995, 1997) and involve the biophysics of the membrane potential. EMDs responding in the cell’s
preferred direction are modeled as excitatory synaptic inputs, while EMDs responding in the null
direction are inhibitory (see Methods). In this chapter we show that pattern size saturation can
be modeled by incorporating these changes into the way that an array of neuronally-based EMD
models (refer to Fig. 2.2) are combined to produce the simulated LPTC response.

3.2 Methods

Contrast saturation was implemented using a sigmoid function:

S(x) = C1 + C2 · 1
1 + e−C3·x (3.1)

with parameters C1 = −.085, C2 = .17 and C3 = 43 set to match the electrophysiological data (refer
to Fig. 3.1a) at transient and steady-state conditions. This saturating nonlinearity was inserted in
the blocks labeled ‘S’ in the diagram shown in Figure 2.2.

LPTC integration of EMD inputs (also called “gain control”) was implemented as described in
Borst et al. (1995, 1997) to produce pattern size saturation, using:

V =
Eege + Eigi

ge + gi + gleak
(3.2)
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(a) (b)

Figure 3.1. Saturation in LPTC responses. (a) Peak and steady-state responses from HS tangential
cells for stimuli moving in the null direction at two temporal frequencies: 1 and 10 Hz. Peak responses
were computed as the maximum response amplitude reached at the onset of motion (see inset in top
plot), while steady-state responses were computed as the mean value after the response had become
stable (see inset in bottom plot). (b) Mean response of an H1 cell as the size of a stimulus pattern
is increased for two stimulus velocities: v1 = 72 deg/sec and v2 = 360 deg/sec. Panels a and b are
reproduced without permission from Egelhaaf and Borst (1989) and Borst et al. (1997), respectively.



21

where Ee and Ei are the excitatory and inhibitory reversal potentials, respectively, ge and gi are
the excitatory and inhibitory conductances, and gleak is the leakage conductance. The values for
Ee and Ei were set to 0.4 and -0.3, respectively, based on Borst et al. (1997). The conductances ge

and gi were driven by the sum of the outputs of the rectified T5 units responding to the simulated
tangential cell’s preferred direction and the sum of the T5 units responding in the null direction,
respectively (refer to ‘G.C.’ block in Figure 2.2). The value of the conductance gleak was empirically
set to 3.5 S. We assumed a single-compartment cell model (see Section 3.3.2). The increase in the
size of the input stimulus was simulated by scaling the output of 50 EMDs from an initial factor of
1 to a factor of 4 in equally spaced increments of 0.5. In a single-compartment model, this produces
approximately the same results as increasing the pattern size by the same factors at sufficiently large
values of spatial frequency.

Contrast sensitivity functions were computed as the inverse of the minimum contrast required for
the simulated LPTC response to reach a particular percentage of the maximum amplitude response
(criterion response) to sinusoidal stimulus. To convert the spatial frequency units of cycles/optic
cartridge (derived from the model implementation) to units of cycles/degree, as reported in Dvorak
et al. (1979), a conversion factor of 1.5 degrees/optic cartridge was used. This is in accordance
with interommatidial angles for the fly Lucilia sericata, which vary from one to about two degrees
depending on the region of the eye being examined (Land and Eckert, 1985).

3.3 Results

Most of the results on contrast saturation presented in this chapter were previously published in a
short paper (Rivera-Alvidrez and Higgins, 2005).

3.3.1 Modeling Contrast Saturation

Measures of the responses of HS tangential cells to sinusoidal gratings which were initially stationary
and then began moving suddenly are shown in Figure 3.1a (Egelhaaf and Borst, 1989). Both the
steady-state response and the peak value of the transient response are plotted for two temporal
frequencies (1 Hz and 10 Hz). The peak response amplitudes at both frequencies reach saturation
faster than the steady-state responses. The peak responses for both frequencies seem to saturate at
about the same contrast, while the steady-state response at the 1 Hz frequency saturates faster than
the response at 10 Hz. Furthermore, the peak responses increase with higher temporal frequency,
unlike the steady-state responses which are lower at higher frequencies.

In order to model contrast saturation, a saturating nonlinearity similar to the one used by
Egelhaaf and Borst (1989) in an HR model was incorporated in the neuronally-based EMD model.
Simulations with the nonlinearity inserted in different locations of the EMD model revealed that
the results of the simulated LPTC predict the electrophysiological features of contrast saturation
previously discussed only if the nonlinearities are placed in the locations indicated by the ‘S’ blocks in
Figure 2.2. For instance, inserting the nonlinearities before the low-pass filters in the Tm9 pathways
produced nearly equal peak response amplitudes for both simulated frequencies at all contrasts (data
not shown).

Peak and steady-state responses of the simulated LPTC produced using the modified neuronally-
based EMD model are shown in Figure 3.2a. The figure shows that the temporal frequency de-
pendence of the peak and steady-state responses, as well as the crossing point between the two
steady-state curves at a contrast of 0.5, are all predicted by the LPTC model. Sample responses of
this model to sinusoidal stimuli at temporal frequencies of 1 and 10 Hz and a contrast of 0.25 are
shown in Figure 3.2b.

Notice that while the temporal frequency dependence of the response measures is accurately
modeled when the saturating nonlinearity is incorporated in the EMD model, the sigmoid does
not explain the difference between the saturation levels reached by the peak and the steady-state
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Figure 3.2. Contrast saturation in the simulated LPTC response. (a) Simulated LPTC response
measures produced using the neuronally-based EMD model with saturation elements. The stimuli
were sinusoidal gratings moving in the null direction at two temporal frequencies: 1 and 10 Hz.
(b) Sample transient responses of the simulated LPTC to sinusoidal stimuli moving at 1 and 10 Hz
with contrast of 0.25. For two seconds each, the stimulus was stationary, moved to the left, was
stationary again and moved to the right. The peak and steady-state responses are marked in the
plots. The steady-state value was computed as the mean response amplitude after the response had
become stable. (c) Same stimulus as in b, except contrast is 0.95. Notice that the peak and the
steady-state responses saturate to the same response level.
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Figure 3.3. Contrast sensitivity functions for criterion response amplitudes (top to bottom lines) of
5%, 10%, 25%, 50% and 75% of maximum amplitude response for: (a) type IIa1 tangential cells, and
(b) the simulated LPTC. The simulated LPTC response was computed using the neuronally-based
EMD model incorporating saturating nonlinearities. Panel a reproduced without permission from
Dvorak et al. (1979).

responses of the tangential cell. The sigmoid results in equal saturation levels for both the peak
and the steady-state responses (consider peak and steady-state saturation levels at a frequency of 1
Hz in Figure 3.2a), unlike the electrophysiology which shows higher saturation levels for the peak
response than for the steady-state response to the same stimulus (refer to 1 Hz saturation levels in
Fig. 3.1a). Furthermore, the sigmoid is often found to distort the shape of the transients at high
contrasts. This is illustrated in Figure 3.2c, which plots the response of the simulated LPTC for the
two temporal frequencies at 95% contrast.

Contrast sensitivity functions were computed for the simulated LPTC response produced using
the neuronally-based model with contrast saturation and compared to the functions obtained by
Dvorak et al (1979) for type IIa1 tangential cells. Figures 3.3a and 3.3b show the CSFs from
tangential cell recordings and from the simulated LPTC, respectively. The results from the LPTC
model share several features with the electrophysiological data. The sensitivity of the model peaks
at the same range of intermediate spatial frequencies as the CSFs of tangential cells, while showing
similar degrees of attenuation at low and high frequencies. Like the electrophysiological data, the
CSFs of the model show flat regions at intermediate frequencies. However, unlike the CSFs of
tangential cells, the CSFs of the model do not become flatter as the criterion response amplitudes
become larger (criterion response amplitudes increase from top to bottom in Fig. 3.3).

3.3.2 Modeling Saturation with Pattern Size

Saturation with pattern size was introduced into the computation of the simulated LPTC response by
incorporating the biophysics of inhibitory and excitatory synaptic inputs, as discussed in Methods.
As shown in Figure 3.4, the LPTC model accurately predicts a saturating response as the size of
the stimulus is increased. Furthermore, the level of saturation reached by the simulated cell’s mean
response is a function of the stimulus temporal frequency. In agreement with the electrophysiology
(refer to Fig. 3.1b), higher temporal frequencies result in lower saturation levels. Our implementation
of pattern size saturation is based on a single-compartment cell model. This assumption has been
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Figure 3.4. Mean response of the simulated LPTC to a sinusoidal pattern moving at two temporal
frequencies: 35 Hz (circles) and 45 Hz (squares) as the size of the pattern is increased. The saturation
level reached by the simulated LPTC response depends on the temporal frequency of the stimulus.

made by other authors (Borst et al., 1995), and produces results qualitatively similar to those
obtained if sixteen compartments (each one implementing Equation 3.2) are considered.

3.4 Discussion

A saturating nonlinearity was inserted into the neuronally-based model of elementary motion detec-
tion with parameters tuned to match electrophysiology from HS tangential cells (refer to Fig. 3.1a).
The resulting LPTC model was found to produce results which looked very similar to the biological
data, accurately predicting the shape and temporal frequency dependence of the tangential peak
and steady-state responses to moving stimuli. Less success was achieved when modeling transient
oscillations at high contrast levels (refer to Fig. 3.2c), which may suggest that while inserting a
single saturating nonlinearity in pathways of the EMD model is a convenient simplification, it does
not fully account for all the features of contrast saturation.

Contrast sensitivity functions (CSFs) of the LPTC model were computed and found to predict
several features of the CSFs of tangential cells (refer to Fig. 3.3). While the sensitivity amplitudes,
rates of attenuation at low and high frequencies and spatial frequency tuning of the neuronally-based
CSFs were similar to the electrophysiology, the CSFs of the LPTC model do not become flatter
at high contrasts (higher criterion response amplitudes). This feature of the electrophysiological
data is likely due to a neuronal mechanism that holds sensitivity constant at high contrasts to
compensate for attenuation that results from the optical filtering of the visual stimulus (Dvorak
et al., 1979). Evidence of such mechanism has been found in humans and is termed “contrast
constancy” (Georgeson and Sullivan, 1975). This compensatory mechanism is not incorporated in
the HR or the neuronally-based EMD models.

While Egelhaaf and Borst (1989) were able to produce similar results with the HR model, the
results from the neuronally-based model have implications for the physiology of the insect. The
simulations showed that there is only one location for the saturation element in the EMD model
that produces results that match features of the electrophysiology from Egelhaaf and Borst (1989)
at both transient and steady-state conditions. This implies that if the neuronally-based EMD model
is correct in the relationships between the cells it incorporates, this saturation may arise in the
synapses of the transmedullary cells (both Tm1 and Tm9) onto T5.

Saturation with increasing stimulus size was also successfully modeled with the incorporation
of membrane potential biophysics into the computation of the simulated tangential cell response.
This type of computation has been implemented in analog vision chips (Harrison and Koch, 1999),
and has proven to be a powerful way to achieve this type of gain control with extremely low power
consumption.
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Chapter 4

Contrast Gain Adaptation

The topic of motion adaptation in tangential cell responses has been a subject of much research
and debate in the last three decades. Motion adaptation results in a reduction of the magnitude of
the LPTC response after exposure to moving stimuli (Maddess and Laughlin, 1985). Similar effects
after motion adaptation have been reported in human psychophysics (Thompson, 1981; Clifford
and Langley, 1996; Bex et al., 1999), and in other mammals (Ibbotson et al., 1998), suggesting the
idea of common principles governing adaptation (Harris et al., 2000). While it has been suggested
that adaptation acts by reducing the contrast gain in the EMDs (Harris et al., 2000), no neuronal
mechanism has been proposed to explain how this change may take place or how it may relate to
adaptation in mammalian vision systems.

In this chapter we identify a neuronal mechanism, namely frequency-dependent synaptic depres-
sion, which has been proposed to explain a number of adapting features in mammalian motion-
sensitive neurons (Chance et al., 1998), and use it to model motion adaptation. While synaptic
depression has been studied mainly in spiking cells, we use the same principles to develop a simple
model for depression in a graded synapse. By incorporating this synaptic model in a particular
location in the neuronally-based EMD model, we show that we can predict with remarkable success
the features of adaptation from various electrophysiological experiments.

4.1 Background and Previous Work

The response of the tangential cell H1 has been shown to be strongest at the onset of motion and
to decay during continuous motion stimulation until a steady-state response level is reached. The
rate of decay of the response was shown by Maddess et al. (1985) to be strongly dependent on the
temporal frequency of the stimulus, and less sensitive to the contrast or to the spatial frequency of
the grating. Importantly, this type of adaptation does not originate in the tangential cell itself, but
it appears to be localized in the EMDs (Maddess and Laughlin, 1985).

Adaptation has also been studied by focusing on the effect that a high-contrast, high-frequency
moving grating (also referred to as a “strongly adapting stimulus”) has on a subsequent test stimulus,
as shown in Figure 4.1. Three components of the adaptation induced by the high frequency stimulus
were identified by Harris et al. (2000). Firstly, a rightward shift of the adapted contrast response
curve with respect to the unadapted state was observed, which was referred to as a reduction in
contrast gain. Secondly, a downward shift of the adapted curve was observed, referred to as an
afterpotential or as the “waterfall effect” because of its similarity to the waterfall illusion in humans
(Wolgemuth, 1911). The afterpotential is inhibitory if the cell was excited during the adapting
period and excitatory if the cell was inhibited. The afterpotential appears to be activity dependent
and directionally selective. Finally, a reduction in output range was observed, which produces a
lower saturation level in the adapted curve, even when the afterpotential is subtracted. All three
components appear to be generated through separate mechanisms, with contrast gain reduction
contributing the most to motion adaptation (Harris et al., 2000). Furthermore, while contrast gain
reduction appears to be localized in the EMDs, the afterpotential and the output range reduction
may originate in the tangential cell itself (Harris et al., 2000). For this reason, we will focus on
modeling contrast gain reduction using the neuronally-based EMD model.

Both Maddess et al. (1985) and Harris et al. (2000) reported that contrast gain reduction is more
pronounced after adaptation with motion than with flicker. As shown in Figure 4.2, adaptation to
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Figure 4.1. Motion adaptation in HS cells. (a) A sinusoidal test grating moving at 5 Hz (contrast =
30%) is presented before and after a strongly adapting stimulus (contrast = 95%, temporal frequency
= 20 Hz). Both the test and the adapting stimuli move in the cell’s preferred direction. The response
to the test stimulus is significantly reduced after adaptation. (b) Normalized mean responses of HS
cells to test stimulus before and after adaptation period, as the contrast of the adapting grating is
varied. Responses are computed from the mean membrane potential 100 to 300 ms after the onset
of the test stimulus. Reproduced without permission from Harris et al. (2000).



27

Figure 4.2. Adaptation with flicker versus motion. Normalized mean response of an HS cell to
a test stimulus before adaptation (closed circles) and after adaptation with wide-field flicker (open
squares), local flicker (open triangles), and preferred-direction motion (open circles). Adaptation
with flicker is weaker than adaptation with motion. Reproduced without permission from Harris et
al. (2000).

motion results in a more significant shift in the adapted curve than adaptation to both wide-field and
local (counterphase) sinusoidal flicker. Moreover, Harris et al. (2000) also reported that contrast
gain adaptation does not depend on the direction of motion. Figure 4.3 shows that when the
afterpotential is accounted for, both adaptation with a stimulus moving in the preferred direction
and adaptation with a stimulus moving in the anti-preferred direction result in similar reductions
in contrast gain. Furthermore, the same contrast gain reduction is produced by a stimulus moving
along the vertical axis, even though HS cells do not respond to vertical motion (Harris et al., 2000).

Consider the contrast response of the unadapted cell in Figure 4.2. At high contrasts, the
response of the cell becomes saturated, and variations in the stimulus contrast level result in little
or no change in the response of the cell. At sufficiently low contrasts, the response of the cell is
below the saturation threshold and variations in the contrast level produce large variations in the
cell’s response (the slope of the contrast response curve increases as the contrast is decreased).
Saturation, therefore, reduces the cell’s sensitivity to the stimulus contrast. A similar region of low
sensitivity has been reported in the temporal frequency tuning of the cell at frequencies which elicit
high response levels, and was also attributed to saturation (Harris et al., 1999). Harris et al. (2000)
proposed that the function of contrast gain reduction could be to “release” the motion pathway from
saturation, allowing it to restore high sensitivity to fluctuations in the stimulus parameters. Harris
et al. hypothesized that in order for contrast gain reduction to protect the system from saturation,
it should occur before the EMD circuitry where this saturation arises. In Chapter 3, we introduced
saturation elements in the inputs to the T5 cells of the neuronally-based EMD model to explain
the saturating curves produced by the responses of LPTCs to increasing stimulus contrast. If the
function of contrast gain reduction is to bring the system’s response below the saturation threshold
so that input sensitivity is restored, it would be reasonable to propose that it occurs before these
saturation elements.

4.2 A Model of Contrast Gain Adaptation

Contrast gain reduction in fly visual interneurons reduces the cell’s response during sustained motion
stimulation. Such a response is similar to the type of responses exhibited in many mammalian cortical
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Figure 4.3. HS cell response to preferred-direction and anti-preferred direction adapting stimuli.
Example traces are shown on left. On the right are shown normalized responses of HS cell to a
test stimulus moving in the preferred direction presented before adaptation (closed circles) and after
adaptation with a stimulus moving in the cell’s preferred (open circles) and in the anti-preferred
direction (open squares). Similar rates of adaptation are produced with preferred-direction and
anti-preferred direction stimulation when the afterpotential is subtracted. Reproduced without
permission from (Harris et al., 2000).

neurons, including neurons in the primary visual cortex V1 (Chance et al., 1998). These neurons
respond to new high frequency stimuli in a stronger manner compared to their responses to sustained
stimuli over the same frequency range. In rats, short-term synaptic depression (Abbott et al., 1997;
Varela et al., 1997) has been identified in V1 neurons as being responsible for the reduction in their
response to sustained stimuli (Chance et al., 1998).

Given the parallels between the responses of the visual neurons in insects and mammals, it
would be reasonable to postulate that a phenomenon such as synaptic depression could be occurring
somewhere in the fly’s EMD pathway. The first step to test this possibility would be to find a possible
location in the neuronally-based EMD model where synaptic depression could be taking place. After
considering the features of adaptation, the Tm1 transmedullary cell appears to be the most likely
candidate. As discussed in Chapter 2, Tm1 is non-directional and responds to both vertical and
horizontal motion, yet its inputs could allow it to differentiate motion from flicker. Adaptation could
thus be taking place at the Tm1 synapses onto T5 and Tm9, before contrast saturation which has
already been proposed in Chapter 3 to take place at the T5 inputs.

In V1, short-term synaptic depression has been modeled as a reduction in the magnitude of
the postsynaptic conductance increase after a presynaptic action potential (Abbott et al., 1997;
Varela et al., 1997; Chance et al., 1998). In spiking cells, the rate of spikes is indicative of the
strength of the response. The higher the rate of spikes, the stronger the depression becomes. In
non-spiking cells, however, the strength of the response is encoded in the amplitude of the membrane
voltage fluctuations with respect to the resting potential. Hence, it appears reasonable to model
synaptic depression in Tm1 by making the reduction in the postsynaptic response proportional to
the amplitude of the previous modulation that elicited the depression. If synaptic depression arises
with each voltage modulation, then the rate of depression will be a strong function of the rate of
modulations, which in Tm1 is equivalent to the temporal frequency of the moving stimulus. Because
the amplitude of the modulations increases with contrast, the rate of depression will also be contrast
dependent. In this model, high-contrast, high-frequency gratings will result in the strongest motion
adaptation.

Our simple model for synaptic depression at the Tm1 synapses can be described as follows.
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Depression is implemented as a gain factor with values in the interval [0,1], where a value of unity
indicates no depression, and a value of zero indicates maximum depression. The depression gain
factor multiplies the Tm1 activity to compute the postsynaptic response. Initially, the value of
the depression gain factor is set to unity. During the time the cell response is rising and positive
with respect to the resting potential, the gain factor decreases in value. While the cell response
is decreasing or below the resting potential, the value of the depression gain factor is allowed to
recover (towards unity). The postsynaptic effect of each cycle of activity in Tm1 is scaled down by
the value of the gain factor at the beginning of the cycle. The decrease in the gain factor during
rising responses is proportional to the amplitude of the rise.

Mathematically, let the Tm1 response (minus the resting potential) be f(t). Let the time of the
beginning of the rise of the last positive modulation in f(t) be called tr, and the time when this
response stops rising and starts decaying be td (see Figure 4.4). If D(t) represents the depression
gain factor, which is initialized to a value of unity, and τd the time constant of recovery, the model
may be described as follows.

D(t) =





1
1

D(tr)+f(t)·D(tr)
if ( ∂f(t)

∂t > 0 and f(t) > 0)
1

1+( 1
D(td)−1)·e−

(t−td)
τd

otherwise (4.1)

The postsynaptic response from Tm1 adjusted for depression (Tm1d) would thus be:

Tm1d = f(t) ·D(tr) + Vrest (4.2)

where Vrest is the resting potential. Furthermore, if f(t) is a sinusoid of frequency f and amplitude
A, then the magnitude of the scale factor D(tr) in each cycle n of f(t) can be described by the
following nonlinear recursive equation:

D(tr)n =
1

1 + (A ·D(tr)n−1 + 1
D(tr)n−1

− 1) · e 3
4fτd

(4.3)

where D(tr) = 1 during the first cycle (n = 1). Notice that because of the way we built the
model, depression recovers during three quarters of every cycle (when f(t) is decreasing or negative),
hence the 3

4 factor in the exponent in Equation 4.3. In order to maximize the depression elicited by
f(t), one needs to minimize D(tr), which can be accomplished by maximizing A or by maximizing
the frequency f . Decreasing D(tr) will, however, have the effect of decreasing the product A ·D(tr),
which will decrease the maximum depression reached during the next cycle. Eventually, the reduction
in the depression gain factor during a particular cycle will be fully recovered by the beginning of the
next cycle, at which point D(t) reaches a steady-state value. This eventual stabilization of synaptic
depression in a steady-state level is illustrated in Figure 4.5 which shows the response of the Tm1
unit from the expanded neuronally-based EMD model (refer to Fig. 2.2), the postsynaptic response
adjusted for depression Tm1d, and the depression gain factor D(t). Because in the neuronally-based
EMD model all responses are with respect to a zero response level in the absence of stimulation
(zero resting potential), subtraction of the resting response level is not necessary.

Note that this synaptic model is based on increasing depression only when the Tm1 response
is rising above the resting potential. Because the model of Tm1 is symmetric in its response to
positive and negative modulations with respect to a resting potential, the same results would have
been produced if we had used the negative modulations to compute depression. Another possibility
would be to increase depression whenever the response of the cell is increasing, regardless of whether
the response is positive or negative with respect to the resting potential. Because of the symmetry
in Tm1, this would only result in doubling A in equation 4.3 and in reducing the time of recovery
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Figure 4.4. A model of depression in Tm1 synapses. The top plot shows the response of f(t) (Tm1
minus resting potential) after stimulation with a sinusoidal grating moving at 2 Hz (contrast = 0.5).
The time of the beginning of the rise of a positive modulation tr and the time the response begins
to decay td are indicated for one cycle. The bottom plot shows the depression gain factor D(t) for
the same stimulus. The levels of depression at the times tr and td are marked on the plot.

to one half of a cycle. Reducing the time constant of recovery and using a scaled version of A would
thus generate the same results as the model proposed.

In order to compare our model for contrast gain reduction with LPTC electrophysiology, we
present the results of a simulated tangential cell which was produced using the neuronally-based
EMD model incorporating frequency-dependent synaptic depression in the Tm1 synapses.

4.3 Methods

In every experiment we used the expanded neuronally-based model including contrast and pattern
size saturation (see Chapter 3). Two different values for the slope of the sigmoid were used depending
on the stimulus protocol. All experiments which included the presentation of a mean luminance
stimulus were produced using a sigmoid function with parameters provided in Section 3.2. In order
to reduce the effect of the sigmoid on the response oscillations produced when the pattern is shown
stationary before motion stimulation, the slope of the sigmoid C3 was reduced from 43 to 20 to
produce the results shown in Fig. 4.9b. Adaptation was implemented as described in Section 4.2.
The time constant of recovery τd was set to 1.2 sec. The adapting algorithm was implemented in
the Tm1 synapses onto T5 and Tm9, as shown in the blocks labeled ‘A’ in Figure 2.2.

4.4 Results

Figure 4.6a shows the H1 response to a square-wave grating which moved at constant speed for 4
seconds at different contrast levels after being adapted to a mean luminance stimulus. The response
of the simulated cell is shown in Figure 4.6b. Similar adaptation rates are produced by the real
cell and the model, especially at the two extreme frequencies: 2 Hz and 16.7 Hz. Notice that the
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Figure 4.5. Synaptic depression in Tm1. Plots show the unaltered Tm1 response (top), the Tm1
response adjusted for depression Tm1d (center), and the corresponding depression gain factor D(t)
(bottom). The stimulus was a sinusoidal grating moving at a temporal frequency of 2 Hz (contrast
= 0.5). The dotted traces in the Tm1d plot emphasize the envelope produced by the effect of the
depression gain factor on the Tm1 response. Notice the eventual stabilization of depression in a
steady-state level.
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responses produced are both a function of the Tm1 depression rates and of contrast saturation.
Contrast saturation tends to reduce the effect of adaptation at frequencies that elicit high response
levels, as shown in the 2 Hz plots. Importantly, the effect of adaptation appears more pronounced for
high contrast, high frequency stimuli, as expected. Furthermore, as the frequency and the contrast
are increased, the depression reaches a steady-state level faster, a feature more clearly shown in
Figure 4.7 which plots the time-course of the depression gain factor D(t) for the same stimuli.

The responses of H1 and of the model to motion stimuli moving in the null direction are shown
in Figures 4.8a and 4.8b, respectively. Because H1 exhibits a low spontaneous firing rate, which is
further reduced during motion stimulation in the null direction, Reisenman et al. (2003) presented
a stimulus moving in the preferred direction in a separate visual area within the cell’s receptive field
when producing the results shown in Figure 4.8a. This had the effect of increasing the dynamic range
of the cell’s response to motion in the null direction by increasing the resting firing rate (Reisenman
et al., 2003). Notice that the rates of adaptation produced by the model are a very close match to the
electrophysiology at contrasts of 19% and 95%. At the lowest contrast of 11%, the firing rate of H1
is not significantly different from the adjusted resting rate. At this contrast level the model response
shows depolarizations at the beginning and the end of the motion stimuli. These depolarizations
have been previously reported in tangential cell recordings of HS cells (see below), although Egelhaaf
and Borst (1989) noted that they were not consistently produced in all preparations.

Figure 4.9 shows intracellular recordings of an HS cell, which was stimulated with a sinusoidal
grating moving in the null direction after the grating was shown stationary. To the right of the
recordings are model responses to the same stimulus protocol. In order to avoid distorting the
response oscillations by the sigmoid used to model contrast saturation, the slope of the sigmoid was
reduced to produce this plot (see Methods). Notice that the oscillations produced in the model are
larger than the oscillations in the electrophysiology. They are however similar in size and duration
to the oscillations produced by versions of the HR model with similar filter time constants (Harris
and O’Carroll, 2002). Like the electrophysiology, the model response also shows depolarizations at
the onset of motion which were not predicted by the HR models (Harris and O’Carroll, 2002). The
presence and size of these depolarizations was found to depend on the initial phase of the grating.
Averaging the results of five experiments with random initial phase, as was done to produce the
plots, had the effect of reducing the amplitude of the depolarizations when compared to some of the
ones observed at particular phase values. Figure 4.9c shows the response of the model to the same
type of stimuli, except that a mean luminance stimulus was presented before motion stimulation
to avoid oscillations which obscure the cell’s mean response. Notice the similar time-course in the
model response and the electrophysiology, especially at the highest frequencies. Depolarizations
before and after motion stimulation are similarly produced.

Adaptation in the model is directionally insensitive, as expected from the properties of Tm1.
Figures 4.10a and 4.10b show the simulated LPTC response to a test stimulus before and after a
period of strong adaptation with a high-frequency, high-contrast grating moving in the preferred
direction (4.10a) and in the anti-preferred or null direction (4.10b). Notice that the response to
the second test stimulus is attenuated by the depression elicited by the adapting grating, similar to
the tangential cell recordings (refer to Fig. 4.1). Moreover, decreasing the frequency of the stimulus
from 20 Hz during the adapting phase to 5 Hz during the second test phase increases the time that
the depression has to recover during subsequent cycles. As a result, the Tm1 depression gain factor
D(t) recuperates to a higher value during the test stimulus (see bottom plots in Fig. 4.10), which
causes the response of the simulated LPTC to increase during the test phase. This increase is also
seen in LPTC recordings (refer to Fig. 4.1).

Finally, we test adaptation with motion versus flicker. Figure 4.11a plots the steady-state re-
sponse of the model during the test stimulus before and after adaptation with local flicker (counter-
phase) and with motion, as the contrast is increased. While adaptation with flicker appears weaker
for all the contrasts tested, the difference between motion and flicker is not as pronounced as in
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Figure 4.6. Adaptation during continuous preferred-direction motion stimulation. (a) H1 record-
ings during motion stimulation with a square-wave grating moving at three different temporal fre-
quencies and three contrast levels in the cell’s preferred direction. A mean luminance stimulus was
shown between presentations of moving stimuli. (b) Simulated tangential cell response to the same
stimulus protocol. The model incorporates depression in the Tm1 synapses onto T5 and Tm9. Panel
a reproduced without permission from Reisenman et al. (2003).
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Figure 4.7. Depression gain factor D(t) for the stimulus protocol of Figure 4.6. Increasing either
the contrast or the temporal frequency of the visual stimulus reduces the values reached by D(t)
and the time needed for it to stabilize at a steady-state level.

the electrophysiology (refer to Fig. 4.2). If instead of the two-dimensional EMD model we use the
one-dimensional model (refer to Fig. 2.2), the response of Tm1 to motion is further emphasized from
flicker. This is shown in Figure 4.11b, which shows a more significant difference between adaptation
with motion and flicker (see Discussion).

4.5 Discussion

A model for visual motion adaptation based on synaptic depression in mammalian vision cells was
incorporated in the Tm1 synapses of the neuronally-based EMD model. Even though the aim was to
produce the most simple model that could enable us to compare the rough features of the simulation
results with the electrophysiology, the results obtained match closely, in many cases, the time course
followed by the cell’s response. Our model explains the strong temporal frequency dependence of
adaptation, the eventual stabilization of adaptation to a steady-state level, and the observed recovery
of LPTC responses from a strongly adapted state induced by a high-frequency high-contrast grating
(refer to Figure 4.10). In addition, as discussed below, new observations arising from the work
provide insight and possible explanations about complex features of adaptation, which have not
been previously addressed.

Contrast saturation reduces the contrast dependence of the rates of adaptation in LPTC responses
to sustained motion stimulation. While Maddess et al. (1985) reported a weak dependence of H1
adaptation rates during continued motion stimulation on contrast, high-contrast high-frequency
gratings are found to induce strong adaptation based on the effect they have on a subsequent test
stimulus (Harris et al., 2000). Our results show that even though adaptation is highly dependent
on contrast, as shown in Figure 4.7, this dependence is obscured in the simulated cell responses
by contrast saturation, which tends to reduce the effect of adaptation as the contrast is increased.
Thus, while in some cases the responses to a moving grating at different contrast levels appear to
simply be scaled versions of each other (refer to 10 Hz plots in Figures 4.6a and 4.6b, for example),
the levels and rates of adaptation may be significantly affected by contrast (refer to Figure 4.7).
Because adaptation in the model occurs before contrast saturation, this contrast dependency, though
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Figure 4.8. Adaptation during continuous null-direction motion stimulation. (a) H1 recordings
during motion stimulation with a square-wave grating moving at three different temporal frequencies
and three visual contrasts in the cell’s null direction. The stimulus was blanked to a mean luminance
level between presentations of moving stimuli. (b) Simulated tangential cell response to the same
stimulus protocol. The model incorporates depression in the Tm1 synapses onto T5 and Tm9. Panel
a reproduced without permission from Reisenman et al. (2003).
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Figure 4.9. Comparison of responses from an HS cell and from the LPTC model to null-direction
motion stimulation. Intracellular recordings of an HS cell (a) and LPTC model responses (b and c)
to sinusoidal gratings moving in the cell’s null direction at various temporal frequencies (contrast
= 10%). In panels a and b the grating was shown stationary before motion stimulation producing
response oscillations (see Methods). In panel c a mean luminance stimulus was presented. Panel a
reproduced without permission from Egelhaaf and Borst (1989).
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Figure 4.10. LPTC model response to a test grating (30% contrast, 5 Hz temporal frequency)
before and after strong motion adaptation with a sinusoidal grating (95% contrast, 20 Hz temporal
frequency), which is moving in the preferred direction (a) and in the anti-preferred or null direction
(b). Top plots show the simulated tangential cell response. Bottom plots show the time-course of
the depression gain factor D(t). Compare to HS cell recordings in Figure 4.1 and 4.3.
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Figure 4.11. Adaptation with flicker versus motion. (a) Mean response of the simulated tangential
cell before adaptation (circles) and after adaptation with local flicker (triangles) or with motion
(squares). As in Harris et al. (2000), the response was computed as the mean value 100 ms to 300
ms after the onset of the test stimulus. (b) Same as panel a, except that the one-dimensional EMD
model was used (see Chapter 2). Compare to Figure 4.2.

not evident in the cell’s response, will be reflected in the magnitude of the reduction of the cell’s
response to a low-contrast test grating.

Adaptation with flicker versus motion. Adaptation with sinusoidal counterphase flicker was found
to be weaker than adaptation with motion, but this difference was not as pronounced as in the
electrophysiology. A more comparable difference was produced if instead of the two-dimensional
EMD model, we used the one-dimensional model where T1 is computed by adding amacrine signals
from only two neighboring photoreceptors (refer to Fig. 2.2), as opposed to the complete hexagonal
array. Doing so reduces the rates of adaptation produced with flicker stimuli by reducing the response
of T1 to flicker. It may be possible to produce similar results with the two-dimensional model after
better developing the early visual processing model stages. In particular, it is likely that amacrine
cells interact with one another, and it is conceivable that such interactions result in an emphasis
of motion versus flicker through some type of inhibition. Such idea may also result in a stronger
Tm1 response to motion than to wide-field sinusoidal flicker. In the current Tm1 model, little if any
difference is produced between these two types of stimuli (data not shown). More biological data
is required to find out whether the Tm1 response to wide-field (sinusoidally modulated) flicker is
weaker than its response to motion.

The origin of synaptic depression. Synaptic depression may arise through postsynaptic or presy-
naptic conditions. Postsynaptic conditions may involve receptor desensitization (Takahashi et al.,
1995), while presynaptic depression may arise from reduced efficacy of the release machinery or
from depletion of releasable vesicles (Neher, 1998). Because the properties of the Tm1 synapses
or similar synapses in this part of the fly’s visual ganglia are largely unknown, we cannot distin-
guish between these possibilities. The large size and abundance of vesicle pools observed in the
Tm1 synapses, however, make vesicle depletion an unlikely source of depression in Tm1 (Strausfeld,
personal communication, 2005).

Parallels between insect and mammalian motion detection. Similarities between adaptation in fly
interneurons and adaptation in mammalian neurons and human psychophysics have been previously
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noted (Harris et al., 2000). Our work suggests that the mechanism of adaptation through short-
term synaptic depression may be common to insect tangential cells and to visual motion-sensitive
neurons in the primary visual cortex of rats. How these two species could have arrived to the
same neural principles may be explained in terms of evolutionary convergence, where unrelated
species under similar environmental constraints independently arrive through evolution to the same
computational solutions. Evolutionary convergence in neural sensory systems is widespread (for a
review see Nishikawa, 2002).
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Chapter 5

Adaptation in the EMD filters

In addition to contrast gain reduction, motion adaptation has also been proposed to result in dy-
namic changes in the EMD filter parameters (de Ruyter van Steveninck et al., 1986; Borst and
Egelhaaf, 1987). Specifically, the time constant of the filters has been said to become shorter after
the presentation of a high-frequency moving stimulus. This idea, however, has been challenged by a
number of findings (Harris et al., 1999), including modeling work which suggests a different expla-
nation for results previously explained in terms of a reduction in the filter time constant (Harris and
O’Carroll, 2002). In 2003, Borst et al. presented modeling data and new electrophysiology results
(Reisenman et al., 2003) supporting the idea of changes in the filter time constant as an explanation
for the shortening of transient responses measured both in the response of the cell to very brief image
motion, and in the cell’s response to sustained motion stimuli. In this chapter, we show that most
of the data in Reisenman et al. (2003) can be predicted by the expanded neuronally-based model
without incorporating any dynamic changes in the filter parameters. Moreover, we show that the
arguments used to refute similar modeling work do not apply to our model.

5.1 Background and Previous work

Most of the evidence in support of changes in the time constant of the EMD filters originates from
“impulse response” experiments. The stimulus protocol used to produce these results typically
involves abruptly stepping the visual stimulus in the LPTC preferred direction, or alternatively,
stimulating the cell with very brief image motion. Tangential cells respond to that type of stimulus
with a transient depolarization which decays exponentially (see Figure 5.1a). In 1986, de Ruyter van
Steveninck et al. showed that if the image step is preceded by motion stimulation during an adapting
phase lasting several seconds, the rate of decay of the transient is strongly dependent on the speed
of the adapting grating. As shown in Figure 5.1a, the duration of the transient becomes shorter
when the speed of the adapting stimulus is increased. If the canonical HR model shown in Fig. 1.6a
is used to model EMDs, the time constant of decay of the simulated cell’s impulse response is equal
to the time constant of the first-order low-pass filter in the model regardless of previous stimuli.
This fact was interpreted as evidence suggesting that the shortening of the transient was produced
by a shortening of the filter time constant after motion adaptation (de Ruyter van Steveninck et al.,
1986). According to the canonical HR model, a shortening of the EMD filter time constant would
translate into a shift of the EMD frequency optimum towards higher temporal frequencies.

While the idea of dynamic adaptation of filter parameters was supported in many publications
(de Ruyter van Steveninck et al., 1986; Borst and Egelhaaf, 1987; Egelhaaf and Borst, 1989; Clifford
et al., 1997; Reisenman et al., 2003; Borst et al., 2003), in 1999 Harris et al. presented substantial
evidence against it. In particular, Harris et al. showed that the temporal frequency tuning of
a moving test stimulus remained roughly the same regardless of whether the test stimulus was
presented before or after adaptation with a high-frequency moving grating (see Figure 5.1b). In
2002, Harris and O’Carroll presented modeling results produced with an HR model with high-pass
filters in all its inputs (refer to Fig. 1.6b), which they referred to as the “high-pass” model. Their
simulations incorporated an “imbalanced subtraction” (unequal weights were assigned to the two
outputs of the multipliers in Figure 1.6b) to produced the simulated LPTC response. The impulse
response produced using the high-pass model (see Figure 5.2) predicted changes in the rate of decay
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(a) (b)

Figure 5.1. The effect of motion adaptation on LPTC impulse responses and frequency tuning.
(a) Average H1 impulse responses. The stimulus was a square-wave grating (contrast = 40%) which
moved with velocities of 0.36 deg/sec (top) and 11 deg/sec (bottom), remained stationary for 200 ms
and was abruptly stepped 6 degrees in the cell’s preferred direction. The duration of the transients
is reduced after high speed motion adaptation. (b) Temporal frequency tuning of HS cell before
motion adaptation (solid line) and after motion adaptation (broken line). Responses were computed
from the average response 100 ms to 250 ms after the onset of a test grating presented before and
after a strongly adapting stimulus. The frequency tuning remains roughly the same before and after
motion adaptation. Panels a and b reproduced without permission from de Ruyter van Steveninck
et al. (1986) and Harris et al. (1999), respectively.
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Figure 5.2. The impulse response of the high-pass model. The stimulus was a sinusoidal grating
which moved during 1.8 seconds at various temporal frequencies, and was stationary during a period
of 200 ms, after which its phase was stepped 45 degrees in the preferred direction. Unnormalized
responses are shown in top plot. Bottom plot shows responses normalized to match peak amplitude
during image step. The transients decay faster as the frequency of the moving grating is increased.
Reproduced without permission from Harris and O’Carroll (2002).

of the LPTC impulse response similar to those reported by de Ruyter van Steveninck et al. (1986)
without any type of change in the time constant of its filters.

The results obtained with the high-pass model were explained in terms of the afterimage effect
(Harris and O’Carroll, 2002). Afterimages, first described by Maddess et al. (1986), refer to the pro-
found changes in the response of tangential cells to subsequent motion stimuli after the presentation
of slowly moving or stationary adapting gratings. The presentation of a stationary grating, as shown
in Figure 5.3, produces strong transient oscillations in the LPTC response to a moving test stimulus
with decay time constants as long as 900 ms. These transient oscillations are not present when a
mean luminance stimulus precedes the stimulation with motion. The afterimage oscillations last
longer when the adapting grating is stationary or moving slowly and are reduced as the speed of the
grating is increased (Harris and O’Carroll, 2002). Based on the afterimage effect, it follows that the
presentation of an image step after stimulation with a high frequency moving grating would result
in a short impulse response, while abruptly stepping the image after it was shown stationary for a
number of seconds would result in a longer transient (Harris and O’Carroll, 2002). The afterimage
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Figure 5.3. Illustration of the afterimage effect. The first moving test stimulus (5% contrast, 5 Hz)
was shown after blanking the visual stimulus to mean luminance, while the second test stimulus was
shown after a stationary grating (65% contrast) was presented for several minutes. The presentation
of a stationary grating produces strong transient oscillations in the LPTC response to the second
test stimulus. Reproduced without permission from Harris and O’Carroll (2002).

effect is therefore consistent with the impulse response data.
Borst et al. (2003), who support the idea of changes in the time constant of the EMD filters

(Borst and Egelhaaf, 1987; Egelhaaf and Borst, 1989), refuted the data obtained with the high-pass
model with the following two arguments. Firstly, the impulse response of an HR model with high-
pass filtered inputs can be mathematically shown to be zero if the grating was shown stationary for
a sufficiently long period of time (to allow filters to reach their steady-state) before the image step.
This is in contrast to LPTC electrophysiology, which shows a strong impulse response regardless
of the duration of the stationary phase of the stimulus. While the high-pass model does produce
an impulse response when the stationary pattern is shown for a brief period (refer to Fig. 5.2),
Borst et al. (2003) pointed out that the shortening of the transients only became evident after
normalization, before which the amplitude of the transients were minuscule. Secondly, the response
of the high pass model to a moving sinusoidal grating is the same before and after spatial integration
by the simulated tangential cell. This contradicts calcium imaging (Single and Borst, 1998) and
small aperture experiments (Egelhaaf et al., 1989) that show that local modulations appear in the
tangential cell inputs and only disappear after spatial integration. According to Borst et al. (2003),
these two arguments suggest that the EMD input pathways are not all high-pass filtered, and so the
high-pass model should not be used to explain the impulse response data.

Reisenman et al. (2003) showed that the response of tangential cells to the sudden onset of
sustained motion stimulation (referred to as the “step response”) produces transients which decay
at faster rates as the contrast of the stimulus is increased. These transients have superimposed
oscillations due to the afterimage effect when the grating is shown stationary before the stimulation
with motion (see Figure 5.4a), but not when a mean luminance stimulus was presented before the
moving grating (see Figure 5.4b). In both cases, the transient components were said to decay
faster as both the contrast and the temporal frequency of the stimuli were increased. The fact that
this reduction in the duration of the transients was observed to occur even when the oscillations
produced by the afterimage effect were not present (Fig. 5.4b) was used as an argument to refute
the involvement of the afterimage effect in the shortening of the transients. The reduction in the
duration of the transient components was explained in terms of changes in the time constant of the
EMD filters.

Reisenman et al. (2003) argued that these transients followed time courses similar to the impulse
response transients at low and high contrasts. This argument was supported by the presentation
of impulse response data, which showed that increasing the stimulus contrast resulted in a more
pronounced reduction in the duration of the transients (refer to Figure 5.5). Borst et al. (2003)
proposed a different version of the HR model with low-pass filters in two of its pathways and high-
pass filters in the other two (refer to Fig. 1.6c), which through adaptation of the high-pass filter
time constant could explain the impulse and step response transient reduction without significantly
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changing the cell’s frequency tuning.
In this chapter, we present simulation results using the neuronally-based EMD model which show

that most of the data in Reisenman et al. (2003) can be produced by the simulated LPTC without
incorporating changes in the EMD filter parameters.

5.2 Methods

All simulations were run using the expanded neuronally-based EMD model incorporating pattern
size saturation with parameters provided in Section 2.3. Neither contrast saturation nor contrast
gain reduction was modeled when producing the impulse response data. Using a sigmoid to model
contrast saturation was found to distort the shape of the transients. Contrast gain reduction was
disabled (by setting the depression gain factor D(t) = 1 at all times) in order to be able to evaluate
the impulse responses without the effects of adaptation. Disabling adaptation allowed us to compare
the impulse response of our model with LPTC impulse responses (in Fig. 5.5) which were manipulated
in order to subtract the effects of adaptation (Reisenman et al., 2003). The impulse responses shown
were produced after averaging the results of 50 experiments with random initial phase. Both contrast
saturation and contrast gain reduction were modeled when simulating step responses (in Fig. 5.8),
as described in Chapter 4.

5.3 Results

5.3.1 Impulse Response Data

To produce the impulse response of the model we used a stimulus protocol similar to the one used
by Reisenman et al. (2003) to generate the responses in Figure 5.5. A square-wave grating moved
for three seconds at various temporal frequencies, was stationary for 200 msec, and moved at 10 Hz
for 20 msec. Figure 5.6 shows the unnormalized responses for stimuli at two contrast levels. The
pathways in the neuronally-based EMD model allowing a sustained component of the photoreceptor
signal (the “relaxed high-pass filters”, Figure 2.2) allow the simulated tangential cell to have an
impulse response amplitude comparable to the amplitude of its response to motion stimulation.
While the impulse response of our simulated LPTC is in some cases smaller than its step response,
the impulse responses produced by our model are definitely much larger than the unnormalized
impulse responses of the high-pass model (refer to Fig. 5.2).

The contrast dependence of the rate of decay of the simulated LPTC impulse response is il-
lustrated in Figure 5.7, which shows that increasing the contrast of the adapting stimulus results
in a more significant difference between the unadapted and the adapted impulse response. This is
the same dependence found in the H1 recordings (refer to Figure 5.5), but not in the simulations
with the high-pass model (Harris and O’Carroll, 2002). As expected, increasing the frequency of
the adapting grating produces shorter impulse responses. Our simulations show that in order to
produce any significant difference between the impulse response of the adapted and the unadapted
tangential cell model, there needs to be an imbalanced subtraction of the tangential cell EMD inputs
with opposite preferred directions. This is true both for our model and for the high-pass model. In
our model such imbalanced subtraction is already incorporated in the computation of the simulated
LPTC response due to the unequal excitatory and inhibitory reversal potentials which multiply the
rectified T5 outputs with opposite preferred directions in Equation 3.2.

5.3.2 Step Response Data

Reisenman et al. (2003) reported that transient components in the H1 step responses decay faster
when the contrast is increased. While our model does not clearly predict any reduction in the tran-
sient oscillations of the step response when the pattern is shown stationary before motion stimulation
as in Fig. 5.4 (data not shown), any transient components in the step responses without oscillations
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(a)

(b)

Figure 5.4. Adaptation in the step responses of H1. (a) H1 recordings during motion stimulation
with a square-wave grating moving at various temporal frequencies and three visual contrasts in the
cell’s preferred direction. The stimulus was shown stationary between phases of sustained motion
stimulation. Notice a reduction in the transient oscillations of the responses as the contrast and
frequency of the stimulus are increased. (b) Same as panel b except that the stimulus was blanked
to a mean luminance level between presentations of motion stimulation. Notice the responses reach
steady-state faster at high contrasts and high temporal frequencies. Reproduced without permission
from Reisenman et al. (2003).
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Figure 5.5. Impulse responses of H1 before adaptation (black traces) and after adaptation (gray
traces) with moving gratings at various temporal frequencies and at two different contrast levels.
Responses are normalized to their maximum. Notice that a more pronounced difference between the
adapted and the unadapted traces is present when the contrast is increased. Reproduced without
permission from (Reisenman et al., 2003).
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Figure 5.6. Unnormalized impulse responses of the simulated tangential cell after motion adapta-
tion. A square-wave grating moved for three seconds at various temporal frequencies, was stationary
for 200 msec, and moved at 10 Hz for 20 msec. The plots show superimposed unnormalized responses
for a contrast of 18% (a) and 95% (b). The adapting grating moved at temporal frequencies of 0
Hz (broken line), 0.1 Hz, 0.5 Hz, 2 Hz, 10 Hz, and 16.7 Hz. While no significant difference in the
impulse responses at low contrast can be appreciated, a reduction in the duration of the transients
with increasing frequency can be seen at high contrast.

(i.e. a mean luminance stimulus was presented between phases of motion stimulation) appear to be
at least partially explained by our model incorporating contrast gain reduction. Figure 5.8 (repro-
duced from Figure 4.6), shows that the transient components of the step responses of the simulated
LPTC decay faster when the contrast and the frequency of the stimulus are increased (compare 2
Hz plot with 11% contrast to 16.7 Hz plot with 95% contrast). This reduction in the duration of
the transient decay is due to our model of contrast gain reduction which predicts that increasing the
contrast and frequency of the grating results in rates of depression that reach a steady-state levels
faster.

5.4 Discussion

We presented simulation results with the expanded neuronally-based EMD model showing that the
reduction in the duration of the impulse response transients can be adequately explained without
implementing dynamic changes in the time constant of the EMD filters. Furthermore, the expanded
neuronally-based model does not have any of the drawbacks cited to refute the results obtained with
the high-pass model. Relaxed high-pass filtering (with a low-pass component) enables the model to
produce robust impulse responses. The response of the neuronally-based model, unlike the high-pass
model, does exhibit local modulations which are reduced through spatial integration in the simulated
tangential cell.

Our results show the same contrast dependence of the impulse response as the electrophysiology.
Note that this dependency cannot be explained in terms of the afterimage effect, as the duration of
afterimage transients increases with increasing contrast levels (Harris and O’Carroll, 2002). While
it is unclear how this dependency arises, through our simulations it was found that imbalanced
subtraction is required both for our model and for the high-pass model to generate impulse responses
decaying at different rates depending on the frequency of the adapting grating. Perhaps the most
important lesson from our work is that in a highly nonlinear system, the results from impulse
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Figure 5.7. Normalized impulse responses from Figure 5.6 produced at contrasts of 18% and
95% (compare to Figure 5.5). The broken line shows the unadapted response (temporal frequency
of adapting grating was set to zero). The responses were normalized to their maximum and the
sustained component of the response was subtracted. Increasing the contrast of the grating results
in a more significant difference between the adapted and the unadapted impulse response.
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Figure 5.8. Step responses of the simulated LPTC with an EMD model incorporating contrast gain
adaptation. A mean luminance stimulus was presented before motion stimulation with a square-
wave grating at various contrast levels and temporal frequencies. The model incorporates depression
in the Tm1 synapses onto T5 and Tm9 (see Chapter 4). Compare to Figure 5.4b.

response experiments may be affected not only by the time constant of the filters but also by a
number of other factors.

Reisenman et al. (2003) also reported a reduction in the afterimage oscillations present in the
tangential cell step response as the contrast is increased, and propose that such reduction is produced
by a shortening of the time constant of the EMD filters. While we are unable to model the tran-
sient oscillations produced by the afterimage effect at high contrasts, we showed that the expanded
neuronally-based model which incorporates contrast gain adaptation accounts for any transient com-
ponents of the H1 response in experimental paradigms that do not produce oscillations.

Our simulations show that changes in time constant of the EMD filters are not necessary to ex-
plain a number of results attributed to them. Explaining the reduction in the afterimage oscillations
at high contrasts may require a deeper understanding of the early visual processing stages where
this oscillations appear to originate and a more elaborate model of contrast saturation.
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Chapter 6

Redundancies in the Fly Visual Motion Pathways

While the foundations of the neuronally-based EMD model are supported by available histological,
anatomical, and electrophysiological results, not all of the data is conclusive and some degree of
speculation was involved into the development of the model. The desire to obtain more conclusive
physiological information about the motion detection pathway is challenged by the small size and
inaccessibility of many of the cells possibly involved. Recently, genetic tools which can block specific
cell types by the selective expression of neural toxins have been used to block cells believed to be
involved in motion detection. The idea is that if the cell being blocked is in the motion detection
pathway, then the flies with the genetic removal will suffer from impairment of behaviors which
require the ability to detect motion, such as the optomotor response. Behavioral experiments with
flies in which two cells proposed to be involved in motion detection (the lamina monopolar cell L2
and the basket T-cell T1) were genetically removed produced somewhat unexpected results.

In this chapter we show the results of simulations with the expanded neuronally-based EMD
model which may explain the outcome of recent genetic experiments. Our results provide additional
evidence in support of the model while revealing redundancies in the input pathways that may result
in a remarkably robust motion detection system.

6.1 Background and Previous Work

The involvement of the lamina monopolar cell L2 in motion detection has been a subject of debate.
L2 is postsynaptic to the achromatic photoreceptors R1 through R6 in the retina (for a review see
Strausfeld and Nässel, 1980) and both its apparent connectivity to transmedullary cells (Strausfeld,
1970) and functional imaging studies with dexoglucose (Bausenwein and Fischbach, 1992; Buchner
and Buchner, 1984) suggest an important role for L2 in motion detection. In 1989, however, Coombe
et al. reported a poor correlation between the degeneration of the lamina monopolar cells L1 and
L2 and optomotor responses in the fly mutant Vam, vacuolar medulla. Because this mutant also
suffers severe degeneration in the outer medulla (Coombe and Heisenberg, 1986), which could also
affect the optomotor response, the results from these experiments were not conclusive.

Keller (2002) presented results from behavioral experiments with flies in which L2 had been
genetically blocked by the selective expression of tetanus neurotoxin (TNT), a toxin that impairs
evoked neurotransmitter release. Keller conducted a number of behavioral experiments aimed at
quantifying the optomotor response in flies expressing a TNT line exclusively in L2 (TNT-flies)
and in control specimens. In one type of experiment, flies immobilized such that they could only
move their heads were shown a moving visual stimulus to elicit an optomotor response in the form
of a head rotation. The steady-state angle reached by the head was reported as a measure of the
strength of the response. No statistically significant difference was found between the TNT-flies
and the controls. In a second type of experiment, flies which could walk on a styrofoam ball (refer
to Figure 1.5b) were shown the same type of moving stimuli, while the rotations of the ball were
carefully measured. The amount of rotation was then reported as a measure of the magnitude of the
walking optomotor response. The results of this experiment are shown in Figure 6.1. A clear and
statistically significant reduction in the magnitude of the response was found between the TNT-flies
and the control specimens, at a wide range of temporal frequencies.
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Figure 6.1. Optomotor responses in walking for flies with blocked L2 (21D/UAS-TNTC in legend,
TNT-flies in text) and controls (21D/UAS-IMP-TNT in legend). A statistically significant reduc-
tion in the optomotor response was found at all temporal frequencies tested. Reproduced without
permission from Keller (2002).

Because the TNT-flies were still able to detect motion after the L2 removal, Keller (2002) con-
cluded that L2 is not necessary for motion detection, but that, given the reduction in the measure of
the walking optomotor response, it may still be involved in the computation. Similarly, preliminary
experiments (Heisenberg, unpublished data, 2005) suggest that motion detection is not fully im-
paired in flies in which the basket T-cell T1 is genetically blocked, and the results of the behavioral
experiments involving these flies may be very similar to those obtained with the L2 removal.

In this chapter we show that the expanded neuronally-based EMD model (refer to Fig. 2.2)
produces results that agree with the behavioral results from genetically-altered flies by presenting
the responses of a simulated LPTC computed either with the original EMD model, or with EMD
models lacking L2 or T1. LPTC responses are highly correlated with the optomotor behavioral
response, and are believed to be largely responsible for this behavior.

6.2 Methods

Simulations were run with the two-dimensional version of the expanded neuronally-based EMD
model incorporating contrast and pattern size saturation (see Chapter 3 for details), and contrast
gain adaptation as described in Chapter 4. When specified, either the L2 or the T1 units in Figure
2.2 were deleted from the model. Deleting L2 resulted in T1 being the only input to Tm1. Similarly,
deleting the T1 unit resulted in L2 being the only Tm1 input.

6.3 Results

The responses of a simulated LPTC before and after removing the cell L2 from the expanded
neuronally-based EMD model are shown in Figure 6.2. While removing L2 reduced the magnitude
of the simulated LPTC response, the removal does not impair its directional selectivity. This result
is due to the fact that in the absence of L2, motion information is still transmitted to Tm1 from
the T1 unit. Figure 6.3 shows that the effect of the L2 removal on the steady-state response of
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Figure 6.2. Responses of the simulated tangential cell computed with L2 (solid line) and without
(dotted line) to a sinusoidal stimulus moving in the horizontal direction at a temporal frequency of 2
Hz (contrast = 20%). The stimulus moved in the preferred direction for five seconds, was stationary
for two seconds, and moved in the null direction for five seconds. A mean luminance stimulus was
presented during the first and last two seconds of stimulation. Removing L2 reduced the magnitude
of the LPTC response.

the model LPTC depends on the contrast and temporal frequency of the visual grating. Contrast
saturation makes the EMD outputs less sensitive to changes in the signal level at high contrasts.
Moreover, the L2 deletion results in a shift of the simulated LPTC temporal frequency optimum
towards lower frequencies. Because L2 is high-pass filtered (refer to Figure 2.2), its contribution to
the model response is higher at high temporal frequencies, and the response reduction after L2 is
removed is therefore more significant as the frequency of the stimulus is increased.

Removing T1 from the input pathways of the neuronally-based model produced similar results,
although a smaller reduction in the amplitude of the simulated LPTC response was predicted.
Figure 6.4 shows the steady-state responses of the original EMD model, and of a model lacking T1.
Notice that a shift of the simulated cell’s frequency optimum towards higher temporal frequencies
is predicted after the T1 removal. This shift arises from the fact that in the model all T1 inputs are
low-pass filtered, which means that the contribution of T1 to the overall response is more significant
at low temporal frequencies. As in the results with the L2 removal, increasing the contrast of the
visual stimulus decreased the effect of removing T1.

Figure 6.5 plots the steady-state responses of the complete model, a model lacking L2, and a
model lacking T1, as the spatial frequency of the visual grating is varied. While removing L2 from
the model did not change the spatial frequency tuning of the simulated cell, removing T1 from the
model results in a shift of the cell’s spatial frequency optimum towards higher frequencies. This
result can be explained by the fact that in the complete model or in a model lacking L2, the Tm1
output is computed as a sum a spatial pool of photoreceptors (refer to Fig. 2.2), reducing the high-
frequency content of the individual input signals. Removing the T1 input from Tm1, results in Tm1
receiving only the signal from a single photoreceptor (transmitted by L2), allowing high-frequency
information to be used in the computation of motion.
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Figure 6.3. Steady-state responses of the simulated LPTC computed with L2 (circles) and without
(triangles) to sinusoidal stimuli moving at various temporal frequencies and at contrast levels of 5%
(a) and 95% (b). The steady-state value was computed as the mean response amplitude during
the last second of five seconds of motion stimulation in the preferred direction. Notice that the
reduction in the LPTC response after the L2 deletion is greater at low contrasts and high temporal
frequencies.
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Figure 6.4. Steady-state responses of the simulated LPTC computed with T1 (circles) and without
(squares) to sinusoidal stimuli moving at various temporal frequencies and at contrast levels of 5%
(a) and 95% (b). The steady-state value was computed as the mean response amplitude during the
last second of five seconds of motion stimulation in the preferred direction. The reduction in the
LPTC response after the L2 deletion is greater at low contrasts and low temporal frequencies.
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Figure 6.5. Steady-state responses of the complete model (circles), the model without L2 (triangles)
and the model without T1 (squares), as the spatial frequency of the grating is varied. The temporal
frequency of the stimulus was 1 Hz and the contrast was 10%. Removing T1 from the model results
in a shift of the simulated LPTC spatial frequency optimum towards higher frequencies.

6.4 Discussion

The results of simulations with the expanded neuronally-based EMD model are consistent with the
results of behavioral experiments with genetically-altered flies. Both the results of the behavioral
experiments and our simulations suggest a reduction in the magnitude of the tangential cell response
to motion after the deletion of either T1 or L2. Our simulations show that the simulated tangential
cell response does not lose its directional selectivity if either of these cells is removed from the
model. In addition, the magnitude of the reduction in the tangential cell response after the removal
is a function of the stimulus temporal and spatial frequencies and of the stimulus contrast. This
could explain why in some behavioral experiments no significant difference was found between the
TNT-flies and the control specimens.

In addition to a reduction in the LPTC response to motion, our results predict other effects of
removing T1 from the motion detection pathway that may be used to guide future experiments. The
simulations show that the T1 removal results in a shift of both the temporal and the spatial frequency
tuning of the simulated LPTC towards higher frequencies. Furthermore, because T1 provides the
model with the only DC or sustained component of the response, removing T1 would significantly
decrease the magnitude of the tangential cell impulse response (see Chapter 5). Importantly, because
contrast saturation obscures the changes in the Tm1 signal level after the T1 or the L2 deletion, our
results show that the changes in the properties of the LPTC response described are more evident
when the contrast of the visual stimulus is low.

Although having both T1 and L2 in the motion-detection pathway does not seem to be crucial
for the ability of tangential cells to detect directional motion or for the optomotor response, both
cells are necessary in our model for the transmedullary cell Tm1 to compute non-directional motion
by comparing signals from neighboring photoreceptors in T1 to the local signal from L2 (Higgins et
al., 2004). Non-directional motion from Tm1 may underlie insect behavioral use of image speed (see
Chapter 7), and we have proposed a possible role for Tm1 in contrast gain adaptation (see Chapter 4).
Moreover, because T1 adds the signals from a spatial pool of photoreceptors, having T1 in the motion
detection pathway may both increase the detector’s response to motion at lower spatial frequencies,
and increase the signal-to-noise ratio by sampling the signals from several photoreceptors. Since



54

noise is one of the most important considerations of early visual processing (for review, see Burton,
2000), such a system would ensure that a reliable signal is provided to the detector even in low
luminance conditions when the high frequency information from L2 may not be as reliable.

The resulting system is also robust in that, as was shown in the experiments, it can still operate
when one of the input pathways is removed. This remarkable robustness may be an evolutionary
advantage, protecting the fly’s ability to detect motion and the behaviors that depend on it against
genetic defects or synaptic malfunctions.
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Chapter 7

A Mechanism for Speed Estimation

A number of behavioral experiments suggest the idea that insects may use the apparent angular
image speed on their eyes for various tasks, including navigation (Srinivasan et al., 1996) and landing
(Srinivasan et al., 2000). However, the responses of most cells involved in motion detection depend
both on the temporal and the spatial frequency of the stimulus, and do not correlate well with
image speed. Higgins (2004) proposed a non-directional motion unit with features that are consistent
with behavioral experiments based on the use of image speed by honeybees (Srinivasan and Zhang,
1993; Srinivasan et al., 1996, 2000). This unit is based on the multiplication of a high-pass filtered
photoreceptor signal with delayed (low-pass filtered) signals from two adjacent photoreceptors (also
high-pass filtered), as shown in Figure 7.1a. In this chapter we show that if the multiplication
operation is replaced with a sum, the amplitude of the resulting signal encodes speed information that
is also consistent with the biological data. This proposed unit, shown in Figure 7.1b, is closely related
to the transmedullary cell Tm1 as implemented in the one-dimensional version of the neuronally-
based EMD model (refer to Fig. 2.2).

7.1 Background and Previous work

Higgins (2004) presented results that showed that the mean response of the non-directional motion
unit in Figure 7.1a (which we will call ND-M) is roughly proportional to speed and independent of
spatial frequency for a range of speeds and spatial frequencies. This result is illustrated in Figure
7.2. The roughly parallel lines in the contour plot in Figure 7.2a suggest a weak dependence of the
ND-M speed tuning on spatial frequency over a range. Figure 7.2b shows that the mean responses
of ND-M at various spatial frequencies are roughly proportional to the stimulus speed until the
peak response is reached. Moreover, in agreement with the results of behavioral experiments with
honeybees (Srinivasan and Zhang, 1993), the mean response of ND-M to sinusoidal counterphase
flicker stimulation is weaker than that to sinusoidal motion stimulation (Higgins, 2004). In order
to explain how honeybees could use the speed information in ND-M, Higgins proposed a model in
which an array of ND-M units for each compound eye of the insect are summed over space and the
resulting signals (for each eye) are subtracted from each other.

In this chapter we show that the amplitude of the unit shown in Figure 7.1b (which we will call
ND-S) has the same type of features as the mean response of ND-M. While both units are inspired
by electrophysiological results from the transmedullary-cell Tm1 (see Discussion), ND-S is closely
related to the Tm1 unit in the neuronally-based EMD model.

7.2 Methods

To derive mathematical expressions for the amplitude of the response of the ND-S unit in Figure
7.1b to sinusoidal motion stimulation and stimulation with sinusoidal counterphase flicker, we used
the following formulae. The moving stimulus was a one-dimensional sinusoidal grating

S(t, x) =
1
2
· (1 + C · sin(ωt · t + ωx · x)) (7.1)

where C is the contrast, ωt the temporal frequency, and ωx the spatial frequency.
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Figure 7.1. ND-M and ND-S units. (a) The non-directional motion unit proposed by Higgins
(2004), which we refer to as ND-M. (b) The ND-S unit produced by replacing the multiplication
(
∏

) operation in ND-M by a sum (
∑

).
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Figure 7.2. Mean ND-M responses. (a) Contour plot of the mean ND-M response as stimulus speed
and spatial frequency are varied. Contour lines were drawn every 0.005 response units. Contours
of positive responses are drawn with solid lines and contours of negative responses are drawn with
dotted lines. Contour lines roughly parallel to the spatial frequency axis indicate speed tuning
that is relatively insensitive to spatial frequency. (b) Speed tuning of mean ND-M response as
spatial frequency is varied. Bold lines show a constant multiple of absolute speed. The speed
tuning of the mean ND-M response roughly follows the line of constant speed until the peak. The
spatial frequencies used were (from largest to smallest response) 0.09, 0.14, and 0.20 cycles per optic
cartridge.
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The sinusoidal counterphase (reversing contrast) flickering stimulus was

Sc(t, x) =
1
2
(1 + C · sin(ωf · t) · sin(ωx · x)) (7.2)

where ωf is the frequency of the contrast reversals.
In order to make our results comparable to the results presented in Higgins (2004), we allowed,

without loss of generality, the spacing between adjacent photoreceptors 4 to be one, which resulted
in the relative phase between sinusoidal inputs to neighboring photoreceptors φx = ωx. The time-
constant of all filters τ was set to 50 ms. As in Higgins (2004), the expression for the first-order
high-pass filter magnitude response h1 was:

h1(ωt) =
ωt · τ√

1 + (ωt · τ)2
(7.3)

The magnitude response h2 and the phase response φ2 of the low-pass filter were

h1(ωt) =
1√

1 + (ωt · τ)2
(7.4)

and
φ2(ωt) = −tan−1(ωt · τ) (7.5)

The stimulus speed v was computed as the ratio of the stimulus temporal and spatial frequencies
(v = ωt

ωx
). Only spatial frequencies below 0.3 cycles per optic cartridge were considered, as frequencies

above this range are extremely attenuated by the insect optics (Snyder, 1979).
In addition to direct evaluations of the mathematical expression for the amplitude of the ND-S

unit, we present (in Figure 7.4) the results of the spatial summation of the rectified responses of a
simulated array of ND-S units. The responses of the ND-S units were rectified by taking the absolute
value. The simulations incorporated a 100-pixel image viewed by 50 equally spaced photoreceptors
and the same number of ND-S units.

7.3 Results

In response to the moving sinusoidal stimulus in Equation 7.1, the signals S1HL, S2H , and S3HL in
Figure 7.1b can be expressed as (see Methods for definitions):

S1HL =
C

2
· h1 · h2 · sin(ωt · t + φ1 + φ2) (7.6)

S2H =
C

2
· h1 · sin(ωt · t + φ1 + φx) (7.7)

S3HL =
C

2
· h1 · h2 · sin(ωt · t + φ1 + φ2 + 2φx) (7.8)

where for simplicity we assume that the absolute phase of the stimulus relative the leftmost pho-
toreceptor in Figure 7.1b is zero. The amplitude of the ND-S unit, computed by adding the three
signals, can be shown to be

AND−S =
C

2
· h1 ·

√
4h2 · [h2 · cos2(φx) + cos(φx) · cos(φ2)] + 1 (7.9)

Substituting the expressions of the filter magnitude and phase response and using the fact that
φx = ωx results in

AND−S =
C

2
· ωt · τ
1 + (ωt · τ)2

·
√

4[·cos2(ωx) + cos(ωx)] + (ωt · τ)2 + 1 (7.10)
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Figure 7.3. Amplitude of ND-S responses. (a) Contour plot of the amplitude of the ND-S responses
(AND−S) as the stimulus speed and spatial frequency are varied. Ten contour lines were drawn at
equally spaced response levels. Contour lines roughly parallel to the spatial frequency axis indicate
speed tuning that is relatively insensitive to spatial frequency. (b) Speed tuning of AND−S as the
spatial frequency is varied. Bold lines show a constant multiple of absolute speed. The AND−S

responses roughly follow the line of constant speed until the peak. The spatial frequencies were
(from largest to smallest response) 0.09, 0.14, and 0.20 cycles per optic cartridge. Notice that the
shape of the responses (including the peak values) are relatively insensitive to the spatial frequency.
Compare to Figure 7.2.

Figure 7.3a shows the contour plot of this response. Notice that at speeds below ten optic
cartridges per second, the contour lines are nearly parallel to the spatial frequency axis. This
insensitivity of the speed tuning to spatial frequency covers most of the spatial frequency range,
including lower and higher spatial frequencies than the ND-M contour lines in Fig. 7.2a. As the
speed increases, the range in which the contour lines are roughly parallel to the spatial frequency
axis becomes more restricted, in a similar manner to the ND-M contour lines.

The rough insensitivity of the AND−S speed tuning to spatial frequency translates into responses
at various spatial frequencies that are proportional to speed over a range. Figure 7.3b shows the
speed tuning of AND−S for three spatial frequencies. The traces roughly follow the line of constant
speed in a similar manner to the ND-M mean responses in Figure 7.2b. Notice that the peak values
and shapes of the ND-S response amplitudes at the three spatial frequencies are more similar than
the ND-M mean responses at the same frequencies, reflecting a higher degree of insensitivity to
spatial frequency.

In order to compare the amplitude of the response of ND-S to motion with the amplitude of its
response to a counterphase flicker, we derive an expression for the ND-S response amplitude when
the stimulus is the sinusoidal reversing-contrast flicker given in Equation 7.2. When responding to
this stimulus, the signals S1HL, S2H , and S3HL in Figure 7.1b can be expressed as (see Methods for
definitions):

S1HL =
C

2
· h1 · h2 · sin(ωf · t + φ1 + φ2) · sin(ωx · p0) (7.11)

S2H =
C

2
· h1 · sin(ωf · t + φ1) · sin(ωx(p0 + 1)) (7.12)

S3HL =
C

2
· h1 · h2 · sin(ωf · t + φ1 + φ2) · sin(ωx(p0 + 2)) (7.13)
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where p0 is the spatial position of the leftmost photoreceptor in Figure 7.1b with respect to
the flickering sinusoidal grating. By summing the three signals and using common trigonometric
identities, the amplitude of ND-S to the counterphase stimulus can be expressed as

AND−Sc =
C

2
· h1 · sin(ωx(p0 + 1)) ·

√
4h2 · [h2 · cos2(φx) + cos(φx) · cos(φ2)] + 1 (7.14)

Comparing Equations 7.14 and 7.9, the amplitude of the Tm1 response to the counterphase flicker
is the amplitude of its response to motion at the same frequency multiplied by sin(ωx(p0 + 1)).
Thus, depending on the spatial position of the Tm1 unit with respect to the flickering grating the
amplitude of the Tm1 response to counterphase flicker can be at most equal to the Tm1 response
to motion, and it is on average weaker.

Unlike ND-M, the mean value of the ND-S response is always zero. One could argue that the
mean level of a signal may be easier to process by postsynaptic neuronal processes than the amplitude
of modulations centered at zero from a signal such as ND-S. One way in which the information in
the amplitude of ND-S can be extracted into the mean response of a signal is if the ND-S output
is rectified and then smoothed by a low-pass filter. Figure 7.4a shows a sample response of a signal
computed as the spatial sum of the rectified outputs of an array of ND-S units (see Methods).
Summing the outputs over space had the effect of removing the traces of the oscillatory components
from the response, so smoothing by a low-pass filter was not necessary. Figure 7.4b shows the speed
tuning of the mean value of the signal at three spatial frequencies for a moving sinusoidal stimulus
and for a sinusoidal counterphase flickering stimulus. As predicted by Equation 7.14, the responses
to the counterphase flicker are weaker than the responses to motion. Notice that both types of
stimuli produce responses that follow lines of constant speed, but in the case of flicker, the speeds
predicted by the responses are lower than those predicted in the case of motion.

7.4 Discussion

In 1995, Douglass and Strausfeld presented electrophysiological recordings from the transmedullary
cell Tm1, showing the response of the cell to a moving stimulus and to wide-field square-wave
flicker. In response to motion, Tm1 showed modulations at frequencies which in one direction of
stimulation matched the temporal frequency of the stimulus, and in the opposite direction exhibited
what appeared to be a weak frequency doubling. This apparent frequency doubling in the Tm1
response may be produced if the inputs to Tm1 (T1 and L2) are multiplied. This, however, produces
modulations at twice the temporal frequency of the stimulus for both directions of stimulation.
Similarly, if the inputs to Tm1 are summed, as assumed in the neuronally-based EMD model, the
modulations in the response match the temporal frequency of the stimulus for both directions of
stimulation. Thus, the Tm1 recordings appear to support the computation of Tm1 as a sum of its
inputs when the stimulus moves in one direction, and the computation of Tm1 as the multiplication
of its inputs when the stimulus moves in the other direction.

The apparent frequency doubling in the Tm1 electrophysiology was an inspiration for the ND-M
unit proposed by Higgins (2004). Replacing the high-pass filters by relaxed high-pass filters in the
low-pass filtered pathways, and inverting all the inputs to the multiplication stage, would indeed
make ND-M equivalent to a Tm1 unit that is computed by the multiplication of L2 and T1 in a
one-dimensional EMD model (refer to Fig. 2.2). Computing Tm1 in this manner, however, produces
results that are not consistent with other behavioral and electrophysiological results available. If the
photoreceptor signals from T1 and L2 are multiplied, the resulting output produces only positive
responses to wide-field square-wave flicker stimulation. This contradicts Tm1 electrophysiology
which shows positive responses relative the resting potential when the luminance level drops (light
turns off), and negative responses when the luminance level rises (light turns on). Furthermore, the
response of a unit that multiplies its inputs is zero if any of the inputs are zero. In the previous
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Figure 7.4. Spatial sum of the rectified outputs of an array of ND-S units. (a) Sample response
produced when summing over space the rectified ND-S responses to a moving stimulus with speed
equal to 20 optic cartridges per second (spatial frequency is 0.2 cycles per optic cartridges). (b)
Speed tuning of the mean response produced after the spatial sum. Solid lines represent the speed
responses when the stimulus was a moving sinusoidal grating while the dotted traces were produced
when the stimulus was a sinusoidal counterphase flickering grating. The spatial frequencies were
(from largest to smallest response) 0.09, 0.14, and 0.20 cycles per optic cartridge. Bold solid and
dotted lines are constant multiples of speed. Note the speed responses produced with counterphase
flicker are weaker than those produced with motion stimulation.
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chapter, however, we learned that genetically deleting L2 or T1 does not result into a complete
impairment of the fly’s response to motion, but rather into a reduction in the magnitude of the
response. Even if the multiplication at Tm1 is implemented as shunting inhibition, the predictions
from the resulting model would still be in disagreement with the outcome of the genetic experiments.

Because both the behavioral results in Chapter 6 and the Tm1 response to flicker from the
electrophysiology can be explained if the inputs to Tm1 are summed, modeling Tm1 in this manner
appears to be a better alternative. Furthermore, the results we presented in this chapter show that
speed information that can be obtained by the mean response of ND-M is encoded in the amplitude
of ND-S. Other simulations (not shown) show that our results are still valid if ND-S is replaced by
Tm1 in the neuronally-based EMD model of Figure 2.2, which has two relaxed high-pass filters and
all inputs inverted. Future work in this area includes investigating other ways in which the Tm1
inputs could be combined (see Chapter 8).
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Chapter 8

Final Comments and Future Work

We have presented a computational exploration of various aspects of fly motion detection, including
contrast and stimulus size saturation (Chapter 3) and adaptation (Chapters 4 and 5). Within the
topic of adaptation, we have proposed, for the first time, a neuronal mechanism that may explain
the contrast gain reduction measured in tangential cell electrophysiology (Chapter 4) and we have
showed that we can predict results previously explained in terms of EMD filter adaptation with
an EMD model with static filter parameters (Chapter 5). Our expanded model for elementary
motion detection is supported by tangential cell electrophysiology and behavioral experiments with
genetically-altered flies (Chapter 6). In addition, we have identified a possible mechanism through
which insects could extract speed information from the projected retinal image (Chapter 7).

The principles of neural computation in the fly visual motion system may be applied in the
design of engineering devices that require the extraction of motion and speed information from a
visual image. Such devices may be used for navigation in applications such as autonomous robots
or unmanned vehicles. A system which computes the apparent image speed of the visual stimulus,
as projected into the “eye” or visual sensor may be used for the computation of depth by parallax,
where movements of the eye result in apparent motion of the objects observed, with relative speeds
that are in proportion to their relative depths. When calibrated, such a system could be used to
estimate the distance to obstacles or targets.

One of the challenges of extracting velocity information from a visual stimulus is that the re-
sponses of motion detectors depend not only on the speed of the stimulus, but also on other stimulus
parameters such as contrast, pattern size and spatial frequency. Incorporating contrast and pattern
size saturation (see Chapter 3) removes the dependence of the system on these parameters over a
range, and if the threshold for saturation is sufficiently low, this range may include most stimuli the
system would encounter in the real world. Contrast saturation, however, appears to be accompanied
by a loss of sensitivity to fluctuations of the stimulus speed. Contrast gain reduction (see Chapter
4), a mechanism which gradually reduces the gain of the system, may help to bring the response level
below the saturation threshold. Thus, by gradually reducing the response to sustained stimulation
(which presumably has already been neuronally processed), the sensitivity to new stimuli is at least
partially restored.

Interestingly, experiments with honeybees suggest that speed information may be provided not
from the output of a directionally-selective motion detector, but from a separate non-directional
system. The transmedullary cell Tm1 in the neuronally-based model appears to already encode in
its amplitude speed information independent of the stimulus spatial frequency (see Chapter 7). The
simplicity of the computation incorporated at the Tm1 unit may be suggestive of an architecture
where relatively simple individual units may accomplish complex tasks, when a massive array of
such units operates in parallel. The world of engineering and computer science, vastly dominated by
sequential processing, may be inspired by such architectures, which result not only in more elegant
designs, but also in more reliable, and potentially much faster information processing.

Undeniably, one of the most remarkable qualities of biological systems is robustness. Redundan-
cies in the neural pathways protect the insects against damage and defects in the neural architecture,
and are features favored by evolution. The motion detection system which is at the core of a num-
ber of important insect behaviors is probably not the exception. The neuronally-based EMD model
incorporates redundant input pathways (see Chapter 6), which may help ensure that stimulus infor-
mation is reliably available for the computation of motion. Such a design architecture would provide
clear benefits to an engineering system operating in unpredictable environments.
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8.1 Future Work

A number of questions arising from our work remained to be answered. Contrast saturation, which
we conveniently modeled by inserting a saturating nonlinearity into individual pathways in the
neuronally-based EMD model, is likely a much more complicated feature than our simplistic approach
assumes. As discussed in Chapter 3, using a sigmoid function to produce saturation fails to account
for some features of the tangential cell electrophysiology. Better results may be obtain if the sigmoid
is not centered at zero but at the sustained component of the input signal. It is possible that
the reduction in the afterimage oscillations in the tangential cell step response when the contrast is
increased (refer to Figure 5.4a), could be explained by a more biologically accurate model of contrast
saturation. At the least, such a possibility ought to be ruled out before evaluating other options like
adaptation of the time constant of the EMD filters.

In this thesis we discussed contrast saturation (Chapter 3) and contrast gain reduction (Chap-
ter 4) as two separate features. It is indeed possible that they are caused by the same synaptic
mechanism. Suggestive of this is the fact that our results indicate that they occur in the same or
in very close locations in the EMD pathways (contrast gain reduction was proposed to occur on the
Tm1 synapses onto T5 and Tm9, while contrast saturation was said to occur in the Tm1 and Tm9
synapses onto T5). More work is required to evaluate whether this could be the case.

The implementation of the model for contrast gain reduction we presented in Chapter 4 was
aimed at comparing our results with the responses of tangential cells to stimulation with sinusoidal
or square-wave gratings. It would be very desirable to compare the model responses to tangential cell
recordings using more complex or realistic types of stimuli. While the implementation of the model
would have to be adjusted, the principles behind it should still hold regardless of the complexity of
the stimulus. Unfortunately, very few examples of LPTC responses to realistic stimuli are available
at the time of this work.

While the responses of the model LPTC to stimuli moving at high temporal frequencies were
comparable to H1 electrophysiology (refer to Fig. 4.6), the response of the model to a stimulus
moving at 20 Hz was weaker than the response of an HS cell to the same stimulus (compare Figures
4.10 and 4.1). Future work may include exploring possible ways to broaden the temporal frequency
tuning of the model. One such possibility could be to incorporate two parallel EMDs, one tuned to
low frequencies and the other one tuned to high frequencies, as suggested by O’Carroll (2001).

Finally, as discussed in Chapter 4, if the Tm1 synapses are the site of synaptic depression, then
the response of Tm1 to wide-field (sinusoidally modulated) flicker should be significantly weaker
than its response to moving sinusoidal gratings. It is possible that amacrine cells implement lateral
inhibition, and it is conceivable that such interactions could emphasize the Tm1 response to motion
over flicker. Such a possibility is worth considering in future work. If it is determined that Tm1
could not be responsible for contrast gain reduction, then other possibilities could be examined, such
as the non-directional T4 bushy T-cell which is not currently incorporated in the neuronally-based
EMD model.
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Strausfeld, N. J. and D. R. Nässel (1980). Neuroarchitectures serving compound eyes of Crustacea
and insects. In Autrum, H., editor, Handbook of Sensory Physiology, VII/68, pp. 1–132. Springer.

Strausfeld, N.J. (1970). Golgi studies on insects. Part II. The optic lobes of diptera. Phylos Roy Soc
Lond B 258: 135–223.

Takahashi, M., Y. Kovalchuck, and D. Attwell (1995). Pre- amd postsynaptic determinants of epsc
waveform at cerbellar fiber and purkinje cell synapses. J. Neuroscience 15: 5693–5707.

Thompson, P. (1981). Velocity after-effects: the effects of adaptation to moving stimuli on the
perception of subsequently seen moving stimuli. Vision Research 21: 337–345.

Varela, J.A., K. Sen, J. Gibson, J. Forst, L.F Abbott, and S.B. Nelson (1997). A quantitative
description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex.
J. Neuroscience 17: 7926–7940.

Wagner, H. (1982). Flow-field variables trigger landing in flies. Nature 297: 147–148.

Wagner, H. (1986). Flight performance and visual control of flight of the free-flying housefly (Musca
Domestica). ii. pursuit of targets. Trans Roy Soc Lond B 312: 553–579.

Wolgemuth, A. (1911). On the after-effect of seen motion. British Journal of Physiology 1: 1–117.

Yeates, D.K. and B.M. Wiegmann (1999). Congruence and controversy: toward a higher-level
phylogeny of diptera. Annual Review of Entomology 44: 397–428.


